3

Understanding
Cryptography

ATextbook for Students and Practitioners

&) Springer



Understanding Cryptography



Christof Paar - Jan Pelzl

Understanding
Cryptography

A Textbook for Students and Practitioners

Foreword by Bart Preneel

@ Springer



Prof. Dr.-Ing. Christof Paar

Chair for Embedded Security

Department of Electrical Engineering
and Information Sciences

Ruhr-Universitat Bochum

44780 Bochum

Germany

cpaar@crypto.rub.de

ISBN 978-3-642-04100-6
DOI 10.1007/978-3-642-04101-3

Springer Heidelberg Dordrecht London New York
ACM Computing Classification (1998): E.3, K.4.4, K.6.5.
Library of Congress Control Number: 2009940447

(© Springer-Verlag Berlin Heidelberg 2010

Dr.-Ing. Jan Pelzl

escrypt GmbH — Embedded Security
Zentrum fiir IT-Sicherheit
Lise-Meitner-Allee 4

44801 Bochum

Germany

jpelzl@escrypt.com

e-ISBN 978-3-642-04101-3

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations

are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not

imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To
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as well as to
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While writing this book we noticed that for some reason the names of our spouses
and children are limited to five letters. As far as we know, this has no cryptographic
relevance.



Foreword

Academic research in cryptology started in the mid-1970s; today it is a mature re-
search discipline with an established professional organization (IACR, International
Association for Cryptologic Research), thousands of researchers, and dozens of in-
ternational conferences. Every year more than a thousand scientific papers are pub-
lished on cryptology and its applications.

Until the 1970s, cryptography was almost exclusively found in diplomatic, mili-
tary and government applications. During the 1980s, the financial and telecommuni-
cations industries deployed hardware cryptographic devices. The first mass-market
cryptographic application was the digital mobile phone system of the late 1980s.
Today, everyone uses cryptography on a daily basis: Examples include unlocking
a car or garage door with a remote-control device, connecting to a wireless LAN,
buying goods with a credit or debit card in a brick and mortar store or on the Inter-
net, installing a software update, making a phone call via voice-over-1P, or paying
for a ride on a public transport system. There is no doubt that emerging application
areas such as e-health, car telematics and smart buildings will make cryptography
even more ubiquitous.

Cryptology is a fascinating discipline at the intersection of computer science,
mathematics and electrical engineering. As cryptology is moving fast, it is hard to
keep up with all the developments. During the last 25 years, the theoretical foun-
dations of the area have been strengthened; we now have a solid understanding of
security definitions and of ways to prove constructions secure. Also in the area of
applied cryptography we witness very fast developments: old algorithms are broken
and withdrawn and new algorithms and protocols emerge.

While several excellent textbooks on cryptology have been published in the last
decade, they tend to focus on readers with a strong mathematical background. More-
over, the exciting new developments and advanced protocols form a temptation to
add ever more fancy material. It is the great merit of this textbook that it restricts
itself to those topics that are relevant to practitioners today. Moreover, the mathe-
matical background and formalism is limited to what is strictly necessary and it is
introduced exactly in the place where it is needed. This “less is more” approach is
very suitable to address the needs of newcomers in the field, as they get introduced

vii



viii Foreword

step by step to the basic concepts and judiciously chosen algorithms and protocols.
Each chapter contains very helpful pointers to further reading, for those who want
to expand and deepen their knowledge.

Overall, I am very pleased that the authors have succeeded in creating a highly
valuable introduction to the subject of applied cryptography. I hope that it can serve
as a guide for practitioners to build more secure systems based on cryptography, and
as a stepping stone for future researchers to explore the exciting world of cryptog-
raphy and its applications.

Leuven, August 2009 Bart Preneel



Preface

Cryptography has crept into everything, from Web browsers and e-mail programs
to cell phones, bank cards, cars and even into medical implants. In the near fu-
ture we will see many new exciting applications for cryptography such as radio
frequency identification (RFID) tags for anti-counterfeiting or car-to-car commu-
nications (we’ve worked on securing both of these applications). This is quite a
change from the past, where cryptography had been traditionally confined to very
specific applications, especially government communications and banking systems.
As a consequence of the pervasiveness of crypto algorithms, an increasing number
of people must understand how they work and how they can be applied in prac-
tice. This book addresses this issue by providing a comprehensive introduction to
modern applied cryptography that is equally suited for students and practitioners in
industry.

Our book provides the reader with a deep understanding of how modern cryp-
tographic schemes work. We introduce the necessary mathematical concepts in a
way that is accessible for every reader with a minimum background in college-level
calculus. It is thus equally well suited as a textbook for undergraduate or begin-
ning graduate classes, or as a reference book for practicing engineers and computer
scientists who are interested in a solid understanding of modern cryptography.

The book has many features that make it a unique source for practitioners and stu-
dents. We focused on practical relevance by introducing most crypto algorithms that
are used in modern real-world applications. For every crypto scheme, up-to-date se-
curity estimations and key length recommendations are given. We also discuss the
important issue of software and hardware implementation for every algorithm. In
addition to crypto algorithms, we introduce topics such as important cryptographic
protocols, modes of operation, security services and key establishment techniques.
Many very timely topics, e.g., lightweight ciphers which are optimized for con-
strained applications (such as RFID tags or smart cards) or new modes of operations,
are also contained in the book.

A discussion section at the end of each chapter with annotated references pro-
vides plenty of material for further reading. For classroom use, these sections are
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an excellent source for course projects. In particular, when used as a textbook, the
companion website for the book is highly recommended:

www.crypto-textbook.com

Readers will find many ideas for course projects, links to open-source software, test
vectors, and much more information on contemporary cryptography. In addition,
links to video lectures are provided.

How to Use the Book

The material in this book has evolved over many years and is “classroom proven”.
We’ve taught it both as a course for beginning graduate students and advanced un-
dergraduate students and as a pure undergraduate course for students majoring in
our IT security programs. We found that one can teach most of the book content
in a two-semester course, with 90 minutes of lecture time plus 45 minutes of help
session with exercises per week (total of 10 ECTS credits). In a typical US-style
three-credit course, or in a one-semester European course, some of the material
should be omitted. Here are some reasonable choices for a one-semester course:

Curriculum 1 Focus on the application of cryptography, e.g., in a computer sci-
ence or electrical engineering program. This crypto course is a good addition
to courses in computer networks or more advanced security courses: Chap. 1;
Sects. 2.1-2.2; Chap. 4; Sect. 5.1; Chap. 6; Sects. 7.1-7.3; Sects. 8.1-8.4; Sects. 10.1-
10.2; Chap. 11; Chap. 12; and Chap. 13.

Curriculum 2 Focus on cryptographic algorithms and their mathematical back-
ground, e.g., as an applied cryptography course in computer science, electrical engi-
neering or in an (undergraduate) math program. This crypto course works also nicely
as preparation for a more theoretical graduate courses in cryptography: Chap. 1;
Chap. 2; Chap. 3; Chap. 4; Chap. 6; Chap. 7; Sects. 8.1 — 8.4; Chap. 9; Chap. 10;
and Sects. 11.1 - 11.2.

Trained as engineers, we have worked in applied cryptography and security for
more than 15 years and hope that the readers will have as much fun with this fasci-
nating field as we’ve had!

Bochum, Christof Paar
September 2009 Jan Pelzl


www.crypto-textbook.com
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Chapter 1
Introduction to Cryptography and Data Security

This section will introduce the most important terms of modern cryptology and will
teach an important lesson about proprietary vs. openly known algorithms. We will
also introduce modular arithmetic which is also of major importance in public-key
cryptography.

In this chapter you will learn:

The general rules of cryptography

Key lengths for short-, medium- and long-term security

The difference between different types of attacks against ciphers

A few historical ciphers, and on the way we will learn about modular arithmetic,
which is of major importance for modern cryptography as well

m Why one should only use well-established encryption algorithms

C. Paar, J. Pelzl, Understanding Cryptography, 1
DOI 10.1007/978-3-642-04101-3_1, (©) Springer-Verlag Berlin Heidelberg 2010



2 1 Introduction to Cryptography and Data Security

1.1 Overview of Cryptology (and This Book)

If we hear the word cryptography our first associations might be e-mail encryption,
secure website access, smart cards for banking applications or code breaking during
World War 11, such as the famous attack against the German Enigma encryption
machine (Fig. 1.1).

Fig. 1.1 The German Enigma encryption machine (reproduced with permission from the
Deutsches Museum, Munich)

Cryptography seems closely linked to modern electronic communication. How-
ever, cryptography is a rather old business, with early examples dating back to about
2000 B.C., when non-standard “secret” hieroglyphics were used in ancient Egypt.
Since Egyptian days cryptography has been used in one form or the other in many,
if not most, cultures that developed written language. For instance, there are doc-
umented cases of secret writing in ancient Greece, namely the scyfale of Sparta
(Fig. 1.2), or the famous Caesar cipher in ancient Rome, about which we will learn
later in this chapter. This book, however, strongly focuses on modern cryptographic

T/H/E/S/C/Y/T/A/L
E[I/{S/A[T/R[A[N
S{P{O\S\I\T{ 1|0
NA\C\T \ PA\H\ E\R

Fig. 1.2 Scytale of Sparta

methods and also teaches many data security issues and their relationship with cryp-
tography.
Let’s now have a look at the field of cryptography (Fig. 1.3). The first thing
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Cryptology

' !

Cryptography Cryptanalysis

Symmetric Asymmetric P )
Ciphers Ciphers rotocols

Fig. 1.3 Overview of the field of cryptology

that we notice is that the most general term is cryptology and not cryptography.
Cryptology splits into two main branches:

Cryptography is the science of secret writing with the goal of hiding the mean-
ing of a message.

Cryptanalysis is the science and sometimes art of breaking cryptosystems. You
might think that code breaking is for the intelligence community or perhaps or-
ganized crime, and should not be included in a serious classification of a scien-
tific discipline. However, most cryptanalysis is done by respectable researchers
in academia nowadays. Cryptanalysis is of central importance for modern cryp-
tosystems: without people who try to break our crypto methods, we will never
know whether they are really secure or not. See Sect. 1.3 for more discussion
about this issue.

Because cryptanalysis is the only way to assure that a cryptosystem is secure,
it is an integral part of cryptology. Nevertheless, the focus of this book is on
cryptography: We introduce most important practical crypto algorithms in detail.
These are all crypto algorithms that have withstood cryptanalysis for a long time, in
most cases for several decades. In the case of cryptanalysis we will mainly restrict
ourselves to providing state-of-the-art results with respect to breaking the crypto al-
gorithms that are introduced, e.g., the factoring record for breaking the RSA scheme.

Let’s now go back to Fig. 1.3. Cryptography itself splits into three main branches:

Symmetric Algorithms are what many people assume cryptography is about:
two parties have an encryption and decryption method for which they share a
secret key. All cryptography from ancient times until 1976 was exclusively based
on symmetric methods. Symmetric ciphers are still in widespread use, especially
for data encryption and integrity check of messages.

Asymmetric (or Public-Key) Algorithms In 1976 an entirely different type of
cipher was introduced by Whitfield Diffie, Martin Hellman and Ralph Merkle. In
public-key cryptography, a user possesses a secret key as in symmetric cryptog-
raphy but also a public key. Asymmetric algorithms can be used for applications
such as digital signatures and key establishment, and also for classical data en-
cryption.

Cryptographic Protocols Roughly speaking, crypto protocols deal with the ap-
plication of cryptographic algorithms. Symmetric and asymmetric algorithms



4 1 Introduction to Cryptography and Data Security

can be viewed as building blocks with which applications such as secure Inter-
net communication can be realized. The Transport Layer Security (TLS) scheme,
which is used in every Web browser, is an example of a cryptographic protocol.

Strictly speaking, hash functions, which will be introduced in Chap. 11, form
a third class of algorithms but at the same time they share some properties with
symmetric ciphers.

In the majority of cryptographic applications in practical systems, symmetric and
asymmetric algorithms (and often also hash functions) are all used together. This is
sometimes referred to as hybrid schemes. The reason for using both families of
algorithms is that each has specific strengths and weaknesses.

The main focus of this book is on symmetric and asymmetric algorithms, as
well as hash functions. However, we will also introduce basic security protocols. In
particular, we will introduce several key establishment protocols and what can be
achieved with crypto protocols: confidentiality of data, integrity of data, authentica-
tion of data, user identification, etc.

1.2 Symmetric Cryptography

This section deals with the concepts of symmetric ciphers and it introduces the
historic substitution cipher. Using the substitution cipher as an example, we will
learn the difference between brute-force and analytical attacks.

1.2.1 Basics

Symmetric cryptographic schemes are also referred to as symmetric-key, secret-key,
and single-key schemes or algorithms. Symmetric cryptography is best introduced
with an easy to understand problem: There are two users, Alice and Bob, who want
to communicate over an insecure channel (Fig. 1.4). The term channel might sound
a bit abstract but it is just a general term for the communication link: This can be the
Internet, a stretch of air in the case of mobile phones or wireless LAN communica-
tion, or any other communication media you can think of. The actual problem starts
with the bad guy, Oscar!, who has access to the channel, for instance, by hacking
into an Internet router or by listening to the radio signals of a Wi-Fi communica-
tion. This type of unauthorized listening is called eavesdropping. Obviously, there
are many situations in which Alice and Bob would prefer to communicate without
Oscar listening. For instance, if Alice and Bob represent two offices of a car man-
ufacturer, and they are transmitting documents containing the business strategy for
the introduction of new car models in the next few years, these documents should

! The name Oscar was chosen to remind us of the word opponent.



1.2 Symmetric Cryptography 5

not get into the hands of their competitors, or of foreign intelligence agencies for
that matter.

Alice x insecure channel X Bob
(good) w (good)

Fig. 1.4 Communication over an insecure channel

In this situation, symmetric cryptography offers a powerful solution: Alice en-
crypts her message x using a symmetric algorithm, yielding the ciphertext y. Bob
receives the ciphertext and decrypts the message. Decryption is, thus, the inverse
process of encryption (Fig. 1.5). What is the advantage? If we have a strong encryp-
tion algorithm, the ciphertext will look like random bits to Oscar and will contain
no information whatsoever that is useful to him.

Alice X encryption Y insecure channel
| —
(good) e() (e.g., Internet)

decryption X Bob
d() (good)

’ secure channel

Fig. 1.5 Symmetric-key cryptosystem

The variables x, y and k in Fig. 1.5 are important in cryptography and have special
names:

x is called plaintext or cleartext,

y is called ciphertext,

k is called the key,

the set of all possible keys is called the key space.

The system needs a secure channel for distribution of the key between Alice
and Bob. The secure channel shown in Fig. 1.5 can, for instance, be a human who
is transporting the key in a wallet between Alice and Bob. This is, of course, a
somewhat cumbersome method. An example where this method works nicely is
the pre-shared keys used in Wi-Fi Protected Access (WPA) encryption in wireless
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LANS. Later in this book we will learn methods for establishing keys over insecure
channels. In any case, the key has only to be transmitted once between Alice and
Bob and can then be used for securing many subsequent communications.

One important and also counterintuitive fact in this situation is that both the en-
cryption and the decryption algorithms are publicly known. It seems that keeping
the encryption algorithm secret should make the whole system harder to break.
However, secret algorithms also mean untested algorithms: The only way to find
out whether an encryption method is strong, i.e., cannot be broken by a determined
attacker, is to make it public and have it analyzed by other cryptographers. Please
see Sect. 1.3 for more discussion on this topic. The only thing that should be kept
secret in a sound cryptosystem is the key.

Remarks:

1. Of course, if Oscar gets hold of the key, he can easily decrypt the message since
the algorithm is publicly known. Hence it is crucial to note that the problem of
transmitting a message securely is reduced to the problems of transmitting a key
secretly and of storing the key in a secure fashion.

2. In this scenario we only consider the problem of confidentiality, that is, of hiding
the contents of the message from an eavesdropper. We will see later in this book
that there are many other things we can do with cryptography, such as preventing
Oscar from making unnoticed changes to the message (message integrity) or
assuring that a message really comes from Alice (sender authentication).

1.2.2 Simple Symmetric Encryption: The Substitution Cipher

We will now learn one of the simplest methods for encrypting text, the substitution
(= replacement) cipher. Historically this type of cipher has been used many times,
and it is a good illustration of basic cryptography. We will use the substitution cipher
for learning some important facts about key lengths and about different ways of
attacking ciphers.

The goal of the substitution cipher is the encryption of text (as opposed to bits
in modern digital systems). The idea is very simple: We substitute each letter of the
alphabet with another one.

Example 1.1.

A — k
B—d

C—w

For instance, the pop group ABBA would be encrypted as kddk.
o
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We assume that we choose the substitution table completely randomly, so that
an attacker is not able to guess it. Note that the substitution table is the key of this
cryptosystem. As always in symmetric cryptography, the key has to be distributed
between Alice and Bob in a secure fashion.

Example 1.2. Let’s look at another ciphertext:

ig ifcc vggr fb rdg vfllcqg na rdg cfjwhwz hr bnnb
hcce hwwhbsgvgbre hwg vhlg

&

This does not seem to make too much sense and looks like decent cryptography.
However, the substitution cipher is not secure at all! Let’s look at ways of breaking
the cipher.

First Attack: Brute-Force or Exhaustive Key Search

Brute-force attacks are based on a simple concept: Oscar, the attacker, has the ci-
phertext from eavesdropping on the channel and happens to have a short piece of
plaintext, e.g., the header of a file that was encrypted. Oscar now simply decrypts
the first piece of ciphertext with all possible keys. Again, the key for this cipher is
the substitution table. If the resulting plaintext matches the short piece of plaintext,
he knows that he has found the correct key.

Definition 1.2.1 Basic Exhaustive Key Search or Brute-force At-
tack

Let (x,y) denote the pair of plaintext and ciphertext, and let K =
{ki,....,ki} be the key space of all possible keys k;. A brute-force
attack now checks for every k; € K if

di,(y) = x.

If the equality holds, a possible correct key is found; if not, proceed
with the next key.

In practice, a brute-force attack can be more complicated because incorrect keys
can give false positive results. We will address this issue in Sect. 5.2.

It is important to note that a brute-force attack against symmetric ciphers is al-
ways possible in principle. Whether it is feasible in practice depends on the key
space, i.e., on the number of possible keys that exist for a given cipher. If testing all
the keys on many modern computers takes too much time, i.e., several decades, the
cipher is computationally secure against a brute-force attack.
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Let’s determine the key space of the substitution cipher: When choosing the re-
placement for the first letter A, we randomly choose one letter from the 26 letters of
the alphabet (in the example above we chose k). The replacement for the next al-
phabet letter B was randomly chosen from the remaining 25 letters, etc. Thus there
exist the following number of different substitution tables:

key space of the substitution cipher = 26-25---3.2.1 = 26! ~ 2%

Even with hundreds of thousands of high-end PCs such a search would take
several decades! Thus, we are tempted to conclude that the substitution cipher is
secure. But this is incorrect because there is another, more powerful attack.

Second Attack: Letter Frequency Analysis

First we note that the brute-force attack from above treats the cipher as a black box,
i.e., we do not analyze the internal structure of the cipher. The substitution cipher
can easily be broken by such an analytical attack.

The major weakness of the cipher is that each plaintext symbol always maps to
the same ciphertext symbol. That means that the statistical properties of the plaintext
are preserved in the ciphertext. If we go back to the second example we observe that
the letter g occurs most frequently in the text. From this we know that g must be the
substitution for one of the frequent letters in the English language.

For practical attacks, the following properties of language can be exploited:

1. Determine the frequency of every ciphertext letter. The frequency distribution,
often even of relatively short pieces of encrypted text, will be close to that of
the given language in general. In particular, the most frequent letters can often
easily be spotted in ciphertexts. For instance, in English E is the most frequent
letter (about 13%), T is the second most frequent letter (about 9%), A is the third
most frequent letter (about 8%), and so on. Table 1.1 lists the letter frequency
distribution of English.

2. The method above can be generalized by looking at pairs or triples, or quadru-
ples, and so on of ciphertext symbols. For instance, in English (and some other
European languages), the letter Q is almost always followed by a U. This behavior
can be exploited to detect the substitution of the letter Q and the letter U.

3. If we assume that word separators (blanks) have been found (which is only some-
times the case), one can often detect frequent short words such as THE, AND, etc.
Once we have identified one of these words, we immediately know three letters
(or whatever the length of the word is) for the entire text.

In practice, the three techniques listed above are often combined to break substi-
tution ciphers.

Example 1.3. If we analyze the encrypted text from Example 1.2, we obtain:

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON
ALL ARRANGEMENTS ARE MADE
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Table 1.1 Relative letter frequencies of the English language

Letter |Frequency | Letter | Frequency
A 0.0817 N 0.0675
B 0.0150 0 0.0751
c 0.0278 P 0.0193
D 0.0425 0 0.0010
E 0.1270 R 0.0599
F 0.0223 S 0.0633
G 0.0202 T 0.0906
H 0.0609 U 0.0276
I 0.0697 Y 0.0098
J 0.0015 W 0.0236
K 0.0077 X 0.0015
L 0.0403 Y 0.0197
M 0.0241 Z 0.0007

&

Lesson learned Good ciphers should hide the statistical properties of the encrypted
plaintext. The ciphertext symbols should appear to be random. Also, a large key
space alone is not sufficient for a strong encryption function.

1.3 Cryptanalysis

This section deals with recommended key lengths of symmetric ciphers and differ-
ent ways of attacking crypto algorithms. It is stressed that a cipher should be secure
even if the attacker knows the details of the algorithm.

1.3.1 General Thoughts on Breaking Cryptosystems

If we ask someone with some technical background what breaking ciphers is about,
he/she will most likely say that code breaking has to do with heavy mathematics,
smart people and large computers. We have images in mind of the British code
breakers during World War II, attacking the German Enigma cipher with extremely
smart mathematicians (the famous computer scientist Alan Turing headed the ef-
forts) and room-sized electro-mechanical computers. However, in practice there are
also other methods of code breaking. Let’s look at different ways of breaking cryp-
tosystems in the real world (Fig. 1.6).
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Cryptanalysis
Classical Implementation Social
Cryptanalysis Attacks Engineering

Mathematical Brute-Force
Analysis Attacks

Fig. 1.6 Overview of cryptanalysis

Classical Cryptanalysis

Classical cryptanalysis is understood as the science of recovering the plaintext x
from the ciphertext y, or, alternatively, recovering the key k from the ciphertext y.
We recall from the earlier discussion that cryptanalysis can be divided into ana-
Iytical attacks, which exploit the internal structure of the encryption method, and
brute-force attacks, which treat the encryption algorithm as a black box and test all
possible keys.

Implementation Attacks

Side-channel analysis can be used to obtain a secret key, for instance, by measuring
the electrical power consumption of a processor which operates on the secret key.
The power trace can then be used to recover the key by applying signal processing
techniques. In addition to power consumption, electromagnetic radiation or the run-
time behavior of algorithms can give information about the secret key and are, thus,
useful side channels.> Note also that implementation attacks are mostly relevant
against cryptosystems to which an attacker has physical access, such as smart cards.
In most Internet-based attacks against remote systems, implementation attacks are
usually not a concern.

Social Engineering Attacks

Bribing, blackmailing, tricking or classical espionage can be used to obtain a secret
key by involving humans. For instance, forcing someone to reveal his/her secret key,
e.g., by holding a gun to his/her head can be quite successful. Another, less violent,
attack is to call people whom we want to attack on the phone, and say: “This is

2 Before you switch on the digital oscilloscope in your lab in order to reload your Geldkarte (the
Geldkarte is the electronic wallet function integrated in most German bank cards) to the maximum
amount of €200: Modern smart cards have built-in countermeasures against side channel attacks
and are very hard to break.
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the IT department of your company. For important software updates we need your
password”. It is always surprising how many people are naive enough to actually
give out their passwords in such situations.

This list of attacks against cryptographic system is certainly not exhaustive. For
instance, buffer overflow attacks or malware can also reveal secret keys in software
systems. You might think that many of these attacks, especially social engineering
and implementation attacks, are “unfair,” but there is little fairness in real-world
cryptography. If people want to break your IT system, they are already breaking the
rules and are, thus, unfair. The major point to learn here is:

An attacker always looks for the weakest link in your cryptosystem. That
means we have to choose strong algorithms and we have to make sure that
social engineering and implementation attacks are not practical.

Even though both implementation attacks and social engineering attacks can be
quite powerful in practice, this book mainly assumes attacks based on mathematical
cryptanalysis.

Solid cryptosystems should adhere to Kerckhoffs’ Principle, postulated by Au-
guste Kerckhoffs in 1883:

Definition 1.3.1 Kerckhoffs’ Principle
A cryptosystem should be secure even if the attacker (Oscar) knows
all details about the system, with the exception of the secret key. In
particular, the system should be secure when the attacker knows the
encryption and decryption algorithms.

Important Remark: Kerckhoffs’ Principle is counterintuitive! It is extremely tempt-
ing to design a system which appears to be more secure because we keep the details
hidden. This is called security by obscurity. However, experience and military his-
tory has shown time and again that such systems are almost always weak, and they
are very often broken easily as soon as the secret design has been reverse-engineered
or leaked out through other means. An example is the Content Scrambling System
(CSS) for DVD content protection, which was broken easily once it was reverse-
engineered. This is why a cryptographic scheme must remain secure even if its de-
scription becomes available to an attacker.

1.3.2 How Many Key Bits Are Enough?

During the 1990s there was much public discussion about the key length of ciphers.
Before we provide some guidelines, there are two crucial aspects to remember:

1. The discussion of key lengths for symmetric crypto algorithms is only relevant
if a brute-force attack is the best known attack. As we saw in Sect. 1.2.2 during
the security analysis of the substitution cipher, if there is an analytical attack that
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works, a large key space does not help at all. Of course, if there is the possibility
of social engineering or implementation attacks, a long key also does not help.

2. The key lengths for symmetric and asymmetric algorithms are dramatically dif-
ferent. For instance, an 80-bit symmetric key provides roughly the same security
as a 1024-bit RSA (RSA is a popular asymmetric algorithm) key.

Both facts are often misunderstood, especially in the semitechnical literature.

Table 1.2 gives a rough indication of the security of symmetric ciphers with re-
spect to brute-force attacks. As described in Sect. 1.2.2, a large key space is a nec-
essary but not sufficient condition for a secure symmetric cipher. The cipher must
also be strong against analytical attacks.

Table 1.2 Estimated time for successful brute-force attacks on symmetric algorithms with different
key lengths

Key length |Security estimation

56-64 bits  |short term: a few hours or days

112-128 bits |long term: several decades in the absence of quantum computers
256 bits long term: several decades, even with quantum computers

that run the currently known quantum computing algorithms

Foretelling the Future Of course, predicting the future tends to be tricky: We can’t
really foresee new technical or theoretical developments with certainty. As you can
imagine, it is very hard to know what kinds of computers will be available in the
year 2030. For medium-term predictions, Moore’s Law is often assumed. Roughly
speaking, Moore’s Law states that computing power doubles every 18 months while
the costs stay constant. This has the following implications in cryptography: If today
we need one month and computers worth $1,000,000 to break a cipher X, then:

m The cost for breaking the cipher will be $500,000 in 18 months (since we only
have to buy half as many computers),

m $250,000 in 3 years,

m $125,000 in 4.5 years, and so on.

It is important to stress that Moore’s Law is an exponential function. In 15 years,
i.e., after 10 iterations of computer power doubling, we can do 2'° = 1024 as many
computations for the same money we would need to spend today. Stated differently,
we only need to spend about 1/1000th of today’s money to do the same computation.
In the example above that means that we can break cipher X in 15 years within one
month at a cost of about $1,000,000/1024 = $1000. Alternatively, with $1,000,000,
an attack can be accomplished within 45 minutes in 15 years from now. Moore’s
Law behaves similarly to a bank account with a 50% interest rate: The compound
interest grows very, very quickly. Unfortunately, there are few trustworthy banks
which offer such an interest rate.
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1.4 Modular Arithmetic and More Historical Ciphers

In this section we use two historical ciphers to introduce modular arithmetic with
integers. Even though the historical ciphers are no longer relevant, modular arith-
metic is extremely important in modern cryptography, especially for asymmetric
algorithms. Ancient ciphers date back to Egypt, where substitution ciphers were
used. A very popular special case of the substitution cipher is the Caesar cipher,
which is said to have been used by Julius Caesar to communicate with his army.
The Caesar cipher simply shifts the letters in the alphabet by a constant number of
steps. When the end of the alphabet is reached, the letters repeat in a cyclic way,
similar to numbers in modular arithmetic.

To make computations with letters more practicable, we can assign each letter of
the alphabet a number. By doing so, an encryption with the Caesar cipher simply
becomes a (modular) addition with a fixed value. Instead of just adding constants,
a multiplication with a constant can be applied as well. This leads us to the affine
cipher.

Both the Caesar cipher and the affine cipher will now be discussed in more detail.

1.4.1 Modular Arithmetic

Almost all crypto algorithms, both symmetric ciphers and asymmetric ciphers, are
based on arithmetic within a finite number of elements. Most number sets we are
used to, such as the set of natural numbers or the set of real numbers, are infinite. In
the following we introduce modular arithmetic, which is a simple way of performing
arithmetic in a finite set of integers.

Let’s look at an example of a finite set of integers from everyday life:

Example 1.4. Consider the hours on a clock. If you keep adding one hour, you ob-
tain:
1h,2h,3h, ..., 11k, 120, 1h,2h,3h, ... 11k 12k, 1h,2h, 38, . ..

Even though we keep adding one hour, we never leave the set.
©

Let’s look at a general way of dealing with arithmetic in such finite sets.
Example 1.5. We consider the set of the nine numbers:
{0,1,2,3,4,5,6,7,8}
We can do regular arithmetic as long as the results are smaller than 9. For instance:

2x3=6
444=38
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But what about 8 +47? Now we try the following rule: Perform regular integer arith-
metic and divide the result by 9. We then consider only the remainder rather than
the original result. Since 8 +4 = 12, and 12/9 has a remainder of 3, we write:

8+4=3mod 9

We now introduce an exact definition of the modulo operation:

Definition 1.4.1 Modulo Operation
Let a,r,m € Z (where Z is a set of all integers) and m > 0. We write

a=rmod m

if m divides a—r.
m is called the modulus and r is called the remainder.

There are a few implications from this definition which go beyond the casual rule
“divide by the modulus and consider the remainder.” We discuss these implications
below.

Computation of the Remainder

It is always possible to write a € Z, such that
a=q-m+r for 0<r<m (1.1)

Since a — r = g - m (m divides a — r) we can now write: @ = r mod m. Note that
re{0,1,2,....m—1}.

Example 1.6. Let a =42 and m = 9. Then
42=4-9+6

and therefore 42 = 6 mod 9.
o

The Remainder Is Not Unique

It is somewhat surprising that for every given modulus m and number a, there are
(infinitely) many valid remainders. Let’s look at another example:

Example 1.7. We want to reduce 12 modulo 9. Here are several results which are
correct according to the definition:



1.4 Modular Arithmetic and More Historical Ciphers 15

m 12=3mod?9, 3isa valid remainder since 9|(12 — 3)
m 12=21mod?9, 21 is a valid remainder since 9|(21 — 3)
m [2=-6mod9, —6is a valid remainder since 9|(—6 — 3)

where the “x|y” means “x divides y”. There is a system behind this behavior. The set

of numbers

{...,—24,-15,-6,3,12,15,24,.. .}

form what is called an equivalence class. There are eight other equivalence classes
for the modulus 9:

{...,—27,-18,-9,0,9,18,27,...}
{...,—26,—17,-8,1,10,19,28,...}

{...,-19,-10,-1, 8, 17,26,35,...}

All Members of a Given Equivalence Class Behave Equivalently

For a given modulus m, it does not matter which element from a class we choose
for a given computation. This property of equivalent classes has major practical
implications. If we have involved computations with a fixed modulus — which is
usually the case in cryptography — we are free to choose the class element that
results in the easiest computation. Let’s look first at an example:

Example 1.8. The core operation in many practical public-key schemes is an expo-
nentiation of the form x¢ mod m, where x, e, m are very large integers, say, 2048 bits
each. Using a toy-size example, we can demonstrate two ways of doing modular ex-
ponentiation. We want to compute 3% mod 7. The first method is the straightforward
approach, and for the second one we switch between equivalent classes.

m 3% =6561 =2 mod 7, since 6561 =937-7+2
Note that we obtain the fairly large intermediate result 6561 even though we
know that our final result cannot be larger than 6.

m Here is a much smarter method: First we perform two partial exponentiations:

3% =3%.3*=81-81

We can now replace the intermediate results 81 by another member of the same
equivalence class. The smallest positive member modulo 7 in the class is 4 (since
81 =11-7+4). Hence:

33=81-81=4-4=16mod 7
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From here we obtain the final result easily as 16 =2 mod 7.

Note that we could perform the second method without a pocket calculator since
the numbers never become larger than 81. For the first method, on the other hand,
dividing 6561 by 7 is mentally already a bit challenging. As a general rule we should
remember that it is almost always of computational advantage to apply the modulo
reduction as soon as we can in order to keep the numbers small.

o

Of course, the final result of any modulo computation is always the same, no
matter how often we switch back and forth between equivalent classes.

Which Remainder Do We Choose?
By agreement, we usually choose r in Eq. (1.1) such that:
0<r<m-—1.

However, mathematically it does not matter which member of an equivalent class
we use.

1.4.2 Integer Rings

After studying the properties of modulo reduction we are now ready to define in
more general terms a structure that is based on modulo arithmetic. Let’s look at the
mathematical construction that we obtain if we consider the set of integers from
zero to m — 1 together with the operations addition and multiplication:

Definition 1.4.2 Ring
The integer ring Z,, consists of:

1. The set 7, = {0,1,2,....m—1}

2. Two operations “+” and “x” for all a,b € Z,,, such that:
l.a+b=cmod m, (c € Zy)
2.axb=dmod m, (d € Zy)

Let’s first look at an example for a small integer ring.

Example 1.9. Letm =9, i.e., we are dealing with the ring Zo = {0, 1,2,3,4,5,6,7,8}.
Let’s look at a few simple arithmetic operations:

6+8=14=5mod 9
6x8 =48 =3 mod 9
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More about rings and finite fields which are related to rings is discussed in
Sect. 4.2. At this point, the following properties of rings are important:

m We can add and multiply any two numbers and the result is always in the ring. A
ring is said to be closed.

m Addition and multiplication are associative, e.g., a+ (b+c) = (a+b) + ¢, and
a-(b-c)=(a-b)-cforall a,b,c € Zy,.

m There is the neutral element 0 with respect to addition, i.e., for every element
a € Z, it holds that a+ 0 = a mod m.

m For any element a in the ring, there is always the negative element —a such that
a+ (—a) =0 mod m, i.e., the additive inverse always exists.

m There is the neutral element 1 with respect to multiplication, i.e., for every ele-
ment a € Z,, it holds that a x 1 = a mod m.

m The multiplicative inverse exists only for some, but not for all, elements. Let
a € Z, the inverse a—! is defined such that

a-a'=1mod m

If an inverse exists for a, we can divide by this element since b/a = b - a~! mod
m.

m It takes some effort to find the inverse (usually employing the Euclidean algo-

rithm, which is taught in Sect. 6.3). However, there is an easy way of telling
whether an inverse for a given element a exists or not:
An element a € 7 has a multiplicative inverse a~! if and only if ged(a,m) = 1,
where gcd is the greatest common divisor , i.e., the largest integer that divides
both numbers a and m. The fact that two numbers have a gcd of 1 is of great
importance in number theory, and there is a special name for it: if ged(a,m) = 1,
then a and m are said to be relatively prime or coprime.

Example 1.10. Let’s see whether the multiplicative inverse of 15 exists in Zg.
Because
gcd(15,26) =1

the inverse must exist. On the other hand, since
gcd(14,26) =2 #1

the multiplicative inverse of 14 does not exist in Zoe.
o

Another ring property is that a X (b+c¢) = (a x b) + (a x ¢) for all a,b,c € Zyy,
i.e., the distributive law holds. In summary, roughly speaking, we can say that the
ring Z,, is the set of integers {0,1,2,...,m — 1} in which we can add, subtract,
multiply, and sometimes divide.

As mentioned earlier, the ring Z,,, and thus integer arithmetic with the modulo
operation, is of central importance to modern public-key cryptography. In practice,
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the integers involved have a length of 150-4096 bits so that efficient modular com-
putations are a crucial aspect.

1.4.3 Shift Cipher (or Caesar Cipher)

We now introduce another historical cipher, the shift cipher. It is actually a special
case of the substitution cipher and has a very elegant mathematical description.

The shift cipher itself is extremely simple: We simply shift every plaintext letter
by a fixed number of positions in the alphabet. For instance, if we shift by 3 posi-
tions, A would be substituted by d, B by e, etc. The only problem arises towards
the end of the alphabet: what should we do with X, Y, Zz? As you might have
guessed, they should “wrap around”. That means X should become a, Y should be-
come b, and Z is replaced by c. Allegedly, Julius Caesar used this cipher with a
three-position shift.

The shift cipher also has an elegant description using modular arithmetic. For
the mathematical statement of the cipher, the letters of the alphabet are encoded as
numbers, as depicted in Table 1.3.

Table 1.3 Encoding of letters for the shift cipher

A|B|C|D|E|F|G
0]1(2]|3]4(5]|6
N|O|P|Q|R|S|T
13(14|15(16|17|18|19

1(J
819
VIWIX|Y|Z
22(23|24(25

B aolwmx

2

—_

Both the plaintext letters and the ciphertext letters are now elements of the ring
Zoe. Also, the key, i.e., the number of shift positions, is also in Zjg since more than
26 shifts would not make sense (27 shifts would be the same as 1 shift, etc.). The
encryption and decryption of the shift cipher follows now as:

Definition 1.4.3 Shift Cipher

Let x,y,k € Z.

Encryption: ¢;(x) = x+k mod 26.
Decryption: di(y) =y—k mod 26.

Example 1.11. Let the key be k = 17, and the plaintext is:
ATTACK = x1,X2,...,%X = 0,19,19,0,2,10.
The ciphertext is then computed as

Y1,¥2,-..,¥6 = 17,10,10,17,19,1 = rkkrtb
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As you can guess from the discussion of the substitution cipher earlier in this
book, the shift cipher is not secure at all. There are two ways of attacking it:

1. Since there are only 26 different keys (shift positions), one can easily launch a
brute-force attack by trying to decrypt a given ciphertext with all possible 26
keys. If the resulting plaintext is readable text, you have found the key.

2. As for the substitution cipher, one can also use letter frequency analysis.

1.4.4 Affine Cipher

Now, we try to improve the shift cipher by generalizing the encryption function.
Recall that the actual encryption of the shift cipher was the addition of the key
vi =xi+k mod 26. The affine cipher encrypts by multiplying the plaintext by one
part of the key followed by addition of another part of the key.

Definition 1.4.4 Affine Cipher

Let x,y,a,b € Zyg

Encryption: e (x) =y=a-x+bmod 26.

Decryption: dy(y) =x=a""-(y—b) mod 26.

with the key: k = (a,b), which has the restriction: ged(a,26) = 1.

The decryption is easily derived from the encryption function:

a-x+b=ymod 26
a-x = (y—b) mod 26
x=a ' (y—b)mod 26

The restriction ged(a,26) = 1 stems from the fact that the key parameter a needs
to be inverted for decryption. We recall from Sect. 1.4.2 that an element a and the
modulus must be relatively prime for the inverse of a to exist. Thus, a must be in
the set:

a€{l1,3,57,9,11,15,17,19,21,23,25} (1.2)

But how do we find a~!? For now, we can simply compute it by trial and error:
For a given a we simply try all possible values a~! until we obtain:

a-a ' =1mod26

For instance, if « = 3, then a—! = 9 since 3-9 = 27 = 1 mod 26. Note that ¢! also
always fulfills the condition gcd(a~',26) = 1 since the inverse of ! always exists.
In fact, the inverse of ! is a itself. Hence, for the trial-and-error determination of

a~! one only has to check the values given in Eq. (1.2).
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Example 1.12. Let the key be k = (a,b) = (9,13), and the plaintext be

ATTACK = X1,X2,...,X¢ = 0,19,19,0,2,10.
The inverse a~! of a exists and is given by a~! = 3. The ciphertext is computed as

Y1,¥2,--,¥6 = 13,2,2,13,5,25 =nccnfz

Is the affine cipher secure? No! The key space is only a bit larger than in the case
of the shift cipher:

key space = (#values for a) x (#values for b)
=12x26=312

A key space with 312 elements can, of course, still be searched exhaustively, i.e.,
brute-force attacked, in a fraction of a second with current desktop PCs. In addition,
the affine cipher has the same weakness as the shift and substitution cipher: The
mapping between plaintext letters and ciphertext letters is fixed. Hence, it can easily
be broken with letter frequency analysis.

The remainder of this book deals with strong cryptographic algorithms which are
of practical relevance.

1.5 Discussion and Further Reading

This book addresses practical aspects of cryptography and data security and is in-
tended to be used as an introduction; it is suited for classroom use, distance learning
and self-study. At the end of each chapter, we provide a discussion section in which
we briefly describe topics for readers interested in further study of the material.

About This Chapter: Historical Ciphers and Modular Arithmetic This chapter
introduced a few historical ciphers. However, there are many, many more, ranging
from ciphers in ancient times to WW II encryption methods. To readers who wish to
learn more about historical ciphers and the role they played over the centuries, the
books by Bauer [13], Kahn [97] and Singh [157] are highly recommended. Besides
making fascinating bedtime reading, these books help one to understand the role
that military and diplomatic intelligence played in shaping world history. They also
help to show modern cryptography in a larger context.

The mathematics introduced in this chapter, modular arithmetic, belongs to the
field of number theory. This is a fascinating subject area which is, unfortunately,
historically viewed as a “branch of mathematics without applications”. Thus, it is
rarely taught outside mathematics curricula. There is a wealth of books on number
theory. Among the classic introductory books are references [129, 148]. A particu-
larly accessible book written for non-mathematications is [156].
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Research Community and General References Even though cryptography has
matured considerably over the last 30 years, it is still a relatively young field com-
pared to other disciplines, and every year brings many new developments and dis-
coveries. Many research results are published at events organized by the Interna-
tional Association for Cryptologic Research (IACR). The proceedings of the three
TIACR conferences CRYPTO, EUROCRYPT, and ASTACRYPT as well as the IACR
workshops Cryptographic Hardware and Embedded Systems (CHES), Fast Soft-
ware Encryption (FSE), Public Key Cryptography (PKC) and Theory of Cryp-
tograpy (TCC), are excellent sources for tracking the recent developments in the
field of cryptology at large. Two important conferences which deal with the larger
issue of security (of which cryptography is one aspect) are the IEEE Symposium on
Security and Privacy and the USENIX Security forum. All of the events listed take
place annually.

There are several good books on cryptography. As reference sources, the Hand-
book of Applied Cryptography [120] and the more recent Encyclopedia of Cryptog-
raphy and Security [168] are highly recommended; both make excellent additions
to this textbook.

Provable Security Due to our focus on practical cryptography, this book omits
most aspects related to the theoretical foundations of crypto algorithms and proto-
cols. Especially in modern cryptographic research, there is a strong desire to provide
statements about cryptographic schemes which are provable in a strict mathematical
sense. For this, the goals of both a security system and the adversary are described
in a formal model. Often, proofs are achieved by reducing the security of a system to
certain assumptions, e.g., that factorization of integers is hard or that a hash function
is collision free.

The field of provable security is quite large. We list now some important subareas.
A recent survey on the specific area of provable public-key encryption is given in
[55]. Provable security is closely related to cryptographic foundations, which stud-
ies the general assumptions and approaches needed. For instance, the interrelation-
ship between certain presumably hard problems (e.g., integer factorization and dis-
crete logarithm) are studied. The standard references are [81, 83]. Zero-knowledge
proofs are concerned with proving a certain knowledge towards another party with-
out revealing the secret. They were originally motivated by proving an entity’s iden-
tity without revealing a password or key. However, they are typically not used that
way any more. An early reference is [139], and a more recent tutorial is given in
[82]. Multiparty computation can be used to compute answers such as the outcome
of an election or determining the highest bid in an auction based on encrypted data.
The interesting part is that when the protocol is completed the participants know
only their own input and the answer but nothing about the encrypted data of the
other participants. Good reference sources are [112] and [83, Chap. 7].

A few times this book also touches upon provable security, for instance the re-
lationship between Diffie—Hellman key exchange and the Diffie—Hellman problem
(cf. Sect. 8.4), the block cipher based hash functions in Sect. 11.3.2 or the security
of the HMAC message authentication scheme in Sect. 12.2.
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As a word of caution, it should be mentioned that even though very practical
results have been derived from research in the provable security of crypto schemes,
many findings are only of limited practical value. Also, the whole field is not without
controversy [84, 102].

Secure System Design Cryptography is often an important tool for building a se-
cure system, but on the other hand secure system design encompasses many other
aspects. Security systems are intended to protect something valuable, e.g., informa-
tion, monetary values, personal property, etc. The main objective of secure system
design is to make breaking the system more costly than the value of the protected
assets, where the “cost” should be measured in monetary value but also in more
abstract terms such as effort or reputation. Generally speaking, adding security to a
system often narrows its usability.

In order to approach the problem systematically, several general frameworks ex-
ist. They typically require that assets and corresponding security needs have to be
defined, and that the attack potential and possible attack paths must be evaluated.
Finally, adequate countermeasures have to be specified in order to realize an appro-
priate level of security for a particular application or environment.

There are standards which can be used for evaluation and help to define a se-
cure system. Among the more prominent ones are ISO/IEC [94] (15408, 15443-1,
15446, 19790, 19791, 19792, 21827), the Common Criteria for Information Tech-
nology Security Evaluation [46], the German IT-Grundschutzhandbuch [37], FIPS
PUBS [77] and many more.

1.6 Lessons Learned

m Never ever develop your own crypto algorithm unless you have a team of expe-
rienced cryptanalysts checking your design.

m Do not use unproven crypto algorithms (i.e., symmetric ciphers, asymmetric ci-
phers, hash functions) or unproven protocols.

m Attackers always look for the weakest point of a cryptosystem. For instance, a
large key space by itself is no guarantee for a cipher being secure; the cipher
might still be vulnerable against analytical attacks.

m Key lengths for symmetric algorithms in order to thwart exhaustive key-search
attacks are:

O 64 bits: insecure except for data with extremely short-term value.

0 112-128 bits: long-term security of several decades, including attacks by in-
telligence agencies unless they possess quantum computers. Based on our cur-
rent knowledge, attacks are only feasible with quantum computers (which do
not exist and perhaps never will).

0O 256 bit: as above, but possibly against attacks by quantum computers.
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m Modular arithmetic is a tool for expressing historical encryption schemes, such
as the affine cipher, in a mathematically elegant way.
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Problems

1.1. The ciphertext below was encrypted using a substitution cipher. Decrypt the ci-
phertext without knowledge of the key.

lrvmnir bpr sumvbwvr jx bpr lmiwv yjeryrkbi jx gmbm wi
bpr xjvni mkd ymibrut jx irhx wi bpr riirkvr jx
ymbinlmtmipw utn gmumbr dj w ipmhh but bj rhnvwdmbr bpr
vijeryrkbi jx bpr gmbm mvvjudwko bj vt wkbrusurbmbwjk
Imird jk xjubt trmui jx ibndt

wb wi kjb mk rmit bmig bj rashmwk rmvp yjeryrkb mkd wbi
iwokwxwvmkvr mkd ijyr ynib urymwk nkrashmwkrd bj ower m
vjyshrbr rashmkmbwjk jkr cjnhd pmer bj lr fnmhwxwrd mkd
wkiswurd bj invp mk rabrkb bpmb pr vjnhd urmvp bpr ibmbr
jx rkhwopbrkrd ywkd vmsmlhr jx urvjokwgwko ijnkdhrii
ijnkd mkd ipmsrhrii ipmsr w dj kjb drry ytirhx bpr xwkmh
mnbpjuwbt 1lnb yt rasruwrkvr cwbp gmbm pmi hrxb kj djnlb
bpmb bpr xjhhjcwko wi bpr sujsru msshwvmbwjk mkd
wkbrusurbmbwijk w jxxru yt bprjuwri wk bpr pjsr bpmb bpr
riirkvr jx jgwkmcmk gmumbr cwhh urymwk wkbmvb

1. Compute the relative frequency of all letters A. . . Z in the ciphertext. You may
want to use a tool such as the open-source program CrypTool [50] for this task.
However, a paper and pencil approach is also still doable.

2. Decrypt the ciphertext with the help of the relative letter frequency of the English
language (see Table 1.1 in Sect. 1.2.2). Note that the text is relatively short and
that the letter frequencies in it might not perfectly align with that of general
English language from the table.

3. Who wrote the text?

1.2. We received the following ciphertext which was encoded with a shift cipher:
xultpaajcxitltlxaarpjhtiwtgxktghidhipxciwtvgtpilpit
ghlxiwiwtxggadds.

1. Perform an attack against the cipher based on a letter frequency count: How
many letters do you have to identify through a frequency count to recover the
key? What is the cleartext?

2. Who wrote this message?

1.3. We consider the long-term security of the Advanced Encryption Standard
(AES) with a key length of 128-bit with respect to exhaustive key-search attacks.
AES is perhaps the most widely used symmetric cipher at this time.

1. Assume that an attacker has a special purpose application specific integrated cir-
cuit (ASIC) which checks 5 - 10® keys per second, and she has a budget of $1
million. One ASIC costs $50, and we assume 100% overhead for integrating
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the ASIC (manufacturing the printed circuit boards, power supply, cooling, etc.).
How many ASICs can we run in parallel with the given budget? How long does
an average key search take? Relate this time to the age of the Universe, which is
about 10'0 years.

2. We try now to take advances in computer technology into account. Predicting
the future tends to be tricky but the estimate usually applied is Moore’s Law,
which states that the computer power doubles every 18 months while the costs
of integrated circuits stay constant. How many years do we have to wait until a
key-search machine can be built for breaking AES with 128 bit with an average
search time of 24 hours? Again, assume a budget of $1 million (do not take
inflation into account).

1.4. We now consider the relation between passwords and key size. For this purpose
we consider a cryptosystem where the user enters a key in the form of a password.

1. Assume a password consisting of 8 letters, where each letter is encoded by the
ASCII scheme (7 bits per character, i.e., 128 possible characters). What is the
size of the key space which can be constructed by such passwords?

2. What is the corresponding key length in bits?

3. Assume that most users use only the 26 lowercase letters from the alphabet in-
stead of the full 7 bits of the ASCII-encoding. What is the corresponding key
length in bits in this case?

4. At least how many characters are required for a password in order to generate a
key length of 128 bits in case of letters consisting of

a. 7-bit characters?
b. 26 lowercase letters from the alphabet?

1.5. As we learned in this chapter, modular arithmetic is the basis of many cryp-
tosystems. As a consequence, we will address this topic with several problems in
this and upcoming chapters.

Let’s start with an easy one: Compute the result without a calculator.

1. 15-29 mod 13
2.2-29 mod 13
3.2-3mod 13
4. —11-3 mod 13

The results should be given in the range from 0, 1,. .., modulus-1. Briefly describe
the relation between the different parts of the problem.
1.6. Compute without a calculator:

1.1/5 mod 13
2.1/5mod 7
3.3-2/5mod 7

1.7. We consider the ring Z4. Construct a table which describes the addition of all
elements in the ring with each other:
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. Construct the multiplication table for Z4.

. Construct the addition and multiplication tables for Zs.

. Construct the addition and multiplication tables for Zsg.

. There are elements in Z4 and Zg without a multiplicative inverse. Which ele-
ments are these? Why does a multiplicative inverse exist for all nonzero elements
in Z5 ?

AWM —

1.8. What is the multiplicative inverse of 5 in Zji, Zj», and Z13? You can do a
trial-and-error search using a calculator or a PC.

With this simple problem we want now to stress the fact that the inverse of an
integer in a given ring depends completely on the ring considered. That is, if the
modulus changes, the inverse changes. Hence, it doesn’t make sense to talk about
an inverse of an element unless it is clear what the modulus is. This fact is crucial
for the RSA cryptosystem, which is introduced in Chap. 7. The extended Euclidean
algorithm, which can be used for computing inverses efficiently, is introduced in
Sect. 6.3.

1.9. Compute x as far as possible without a calculator. Where appropriate, make use
of a smart decomposition of the exponent as shown in the example in Sect. 1.4.1:

1. x=3% mod 13
2. x="7%mod 13
3. x=3%mod 13
4. x =79 mod 13
5.7"=11mod 13

The last problem is called a discrete logarithm and points to a hard problem which
we discuss in Chap. 8. The security of many public-key schemes is based on the
hardness of solving the discrete logarithm for large numbers, e.g., with more than
1000 bits.

1.10. Find all integers n between 0 < n < m that are relatively prime to m for m =
4,5,9,26. We denote the number of integers n which fulfill the condition by ¢ (),
e.g. ¢(3) = 2. This function is called “Euler’s phi function”. What is ¢ (m) for m =
4,5,9,26?

1.11. This problem deals with the affine cipher with the key parameters a =7, b =
22.

1. Decrypt the text below:
falszztysyjzyjkywjrztyjztyynaryjkyswarztyegyyj
2. Who wrote the line?
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1.12. Now, we want to extend the affine cipher from Sect. 1.4.4 such that we can
encrypt and decrypt messages written with the full German alphabet. The German
alphabet consists of the English one together with the three umlauts, A, O, U, and the
(even stranger) “double s” character 8. We use the following mapping from letters
to integers:

A—0 B~1 C—2 D«~3 E~4 F«S5
G—6 He7 I[—38 Jo9 K< 10 L 11
M < 12 N < 13 0« 14 P« 15 Q<16 R« 17
S 18 T 19 U« 20 V 21 W 22 X < 23
Y 24 Z 25 A 26 0«27 U~ 28 B 29

1. What are the encryption and decryption equations for the cipher?

2. How large is the key space of the affine cipher for this alphabet?

3. The following ciphertext was encrypted using the key (a = 17,b = 1). What is
the corresponding plaintext?

dufBBwifh

4. From which village does the plaintext come?

1.13. In an attack scenario, we assume that the attacker Oscar manages somehow
to provide Alice with a few pieces of plaintext that she encrypts. Show how Oscar
can break the affine cipher by using two pairs of plaintext—ciphertext, (x;,y;) and
(x2,¥2). What is the condition for choosing x| and x,?

Remark: In practice, such an assumption turns out to be valid for certain settings,
e.g., encryption by Web servers, etc. This attack scenario is, thus, very important and
is denoted as a chosen plaintext attack.

1.14. An obvious approach to increase the security of a symmetric algorithm is to
apply the same cipher twice, i.e.:

y = epa(ex1(x))

As is often the case in cryptography, things are very tricky and results are often dif-
ferent from the expected and/ or desired ones. In this problem we show that a double
encryption with the affine cipher is only as secure as single encryption! Assume two
affine ciphers ey = ajx+ by and e, = arx+ b;.

1. Show that there is a single affine cipher e;3 = azx + b3z which performs exactly
the same encryption (and decryption) as the combination ey, (k1 (x)).

2. Find the values for a3, b3 whena; =3,by =5anda; =11,b, =17.

3. For verification: (1) encrypt the letter K first with e;; and the result with ej,, and
(2) encrypt the letter K with eg3.

4. Briefly describe what happens if an exhaustive key-search attack is applied to a
double-encrypted affine ciphertext. Is the effective key space increased?

Remark: The issue of multiple encryption is of great practical importance in the
case of the Data Encryption Standard (DES), for which multiple encryption (in par-
ticular, triple encryption) does increase security considerably.



Chapter 2
Stream Ciphers

If we look at the types of cryptographic algorithms that exist in a little bit more
detail, we see that the symmetric ciphers can be divided into stream ciphers and
block ciphers, as shown in Fig. 2.1.

Cryptography
Symmetric Asymmetric p !
Ciphers Ciphers rotocols
Block Ciphers Stream Ciphers

Fig. 2.1 Main areas within cryptography

This chapter gives an introduction to stream ciphers:

The pros and cons of stream ciphers

Random and pseudorandom number generators

A truly unbreakable cipher: the One-Time Pad (OTP)

Linear feedback shift registers and Trivium, a modern stream cipher

C. Paar, J. Pelzl, Understanding Cryptography, 29
DOI 10.1007/978-3-642-04101-3_2, (©) Springer-Verlag Berlin Heidelberg 2010
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2.1 Introduction

2.1.1 Stream Ciphers vs. Block Ciphers

Symmetric cryptography is split into block ciphers and stream ciphers, which are
easy to distinguish. Figure 2.2 depicts the operational differences between stream
(Fig. 2.2a) and block (Fig. 2.2b) ciphers when we want to encrypt b bits at a time,
where b is the width of the block cipher.

k Xo k Yo
i X i »i
XoXp...Xp Stream Yoyi- -V Xp Block Do
7 Cipher 7 7 Cipher 7
I P I b P b
(a) (b)

Fig. 2.2 Principles of encrypting b bits with a stream (a) and a block (b) cipher

A description of the principles of the two types of symmetric ciphers follows.

Stream ciphers encrypt bits individually. This is achieved by adding a bit from
a key stream to a plaintext bit. There are synchronous stream ciphers where
the key stream depends only on the key, and asynchronous ones where the key
stream also depends on the ciphertext. If the dotted line in Fig. 2.3 is present,
the stream cipher is an asynchronous one. Most practical stream ciphers are syn-
chronous ones and Sect. 2.3 of this chapter will deal with them. An example of
an asynchronous stream cipher is the cipher feedback (CFB) mode introduced in
Sect. 5.1.4.

k

i

key stream
generator

Si

M J
N

Fig. 2.3 Synchronous and asynchronous stream ciphers

Xi

Block ciphers encrypt an entire block of plaintext bits at a time with the same
key. This means that the encryption of any plaintext bit in a given block depends
on every other plaintext bit in the same block. In practice, the vast majority of
block ciphers either have a block length of 128 bits (16 bytes) such as the ad-
vanced encryption standard (AES), or a block length of 64 bits (8 bytes) such as
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the data encryption standard (DES) or triple DES (3DES) algorithm. All of these
ciphers are introduced in later chapters.

This chapter gives an introduction to stream ciphers. Before we go into more

detail, it will be helpful to learn some useful facts about stream ciphers vs. block
ciphers:

1.

2.

In practice, in particular for encrypting computer communication on the Internet,
block ciphers are used more often than stream ciphers.

Because stream ciphers tend to be small and fast, they are particularly relevant
for applications with little computational resources, e.g., for cell phones or other
small embedded devices. A prominent example for a stream cipher is the A5/1
cipher, which is part of the GSM mobile phone standard and is used for voice
encryption. However, stream ciphers are sometimes also used for encrypting In-
ternet traffic, especially the stream cipher RC4.

Traditionally, it was assumed that stream ciphers tended to encrypt more effi-
ciently than block ciphers. Efficient for software-optimized stream ciphers means
that they need fewer processor instructions (or processor cycles) to encrypt one
bit of plaintext. For hardware-optimized stream ciphers, efficient means they need
fewer gates (or smaller chip area) than a block cipher for encrypting at the same
data rate. However, modern block ciphers such as AES are also very efficient in
software. Moreover, for hardware, there are also highly efficient block ciphers,
such as PRESENT, which are as efficient as very compact stream ciphers.

2.1.2 Encryption and Decryption with Stream Ciphers

As mentioned above, stream ciphers encrypt plaintext bits individually. The question
now is: How does encryption of an individual bit work? The answer is surprisingly
simple: Each bit x; is encrypted by adding a secret key stream bit s; modulo 2.

Definition 2.1.1 Stream Cipher Encryption and Decryption

The plaintext, the ciphertext and the key stream consist of individ-
ual bits,

i.e., x;,vi,s; € {0,1}.

Encryption: y; = e, (x;) = x;+s; mod 2.

Decryption: x; = d;,(y;) = y; +s; mod 2.

Since encryption and decryption functions are both simple additions modulo 2,

we can depict the basic operation of a stream cipher as shown in Fig. 2.4. Note that
we use a circle with an addition sign as the symbol for modulo 2 addition.

Just looking at the formulae, there are three points about the stream cipher en-

cryption and decryption function which we should clarify:

1.

Encryption and decryption are the same functions!
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Si
x, /AR i insecure channel Yi X;
N (e.g., Internet) ( ) -

Fig. 2.4 Encryption and decryption with stream ciphers

2. Why can we use a simple modulo 2 addition as encryption?
3. What is the nature of the key stream bits s;?

The following discussion of these three items will give us already an understanding
of some important stream cipher properties.

Why Are Encryption and Decryption the Same Function?

The reason for the similarity of the encryption and decryption function can easily
be shown. We must prove that the decryption function actually produces the plain-
text bit x; again. We know that ciphertext bit y; was computed using the encryption
function y; = x; +s; mod 2. We insert this encryption expression in the decryption
function:

dy;(yi) = yi+si mod 2
= (x;+s5;)+s; mod 2
= x;+s;+s; mod 2
=x;+2s; mod 2
=x;+0mod 2
=x;mod 2 Q.E.D.

The trick here is that the expression (2s5; mod 2) has always the value zero since
2 =0mod 2. Another way of understanding this is as follows: If s; has either the
value 0, in which case 2s5; =2-0=0mod 2.Ifs; =1, we have 25;, =2-1 =2 =
0 mod 2.

Why Is Modulo 2 Addition a Good Encryption Function?

A mathematical explanation for this is given in the context of the One-Time Pad in
Sect. 2.2.2. However, it is worth having a closer look at addition modulo 2. If we do
arithmetic modulo 2, the only possible values are 0 and 1 (because if you divide by
2, the only possible remainders are 0 and 1). Thus, we can treat arithmetic modulo
2 as Boolean functions such as AND gates, OR gates, NAND gates, etc. Let’s look
at the truth table for modulo 2 addition:

This should look familiar to most readers: It is the truth table of the exclusive-OR,
also called XOR, gate. This is in important fact: Modulo 2 addition is equivalent to
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the XOR operation. The XOR operation plays a major role in modern cryptography
and will be used many times in the remainder of this book.

The question now is, why is the XOR operation so useful, as opposed to, for
instance, the AND operation? Let’s assume we want to encrypt the plaintext bit
x; = 0. If we look at the truth table we find that we are on either the 1st or 2nd line
of the truth table:

Table 2.1 Truth table of the XOR operation

Depending on the key bit, the ciphertext y; is either a zero (s; = 0) or one (s; = 1).
If the key bit s; behaves perfectly randomly, i.e., it is unpredictable and has exactly a
50% chance to have the value O or 1, then both possible ciphertexts also occur with
a 50% likelihood. Likewise, if we encrypt the plaintext bit x; = 1, we are on line 3
or 4 of the truth table. Again, depending on the value of the key stream bit s;, there
is a 50% chance that the ciphertext is either a 1 or a 0.

We just observed that the XOR function is perfectly balanced, i.e., by observing
an output value, there is exactly a 50% chance for any value of the input bits. This
distinguishes the XOR gate from other Boolean functions such as the OR, AND or
NAND gate. Moreover, AND and NAND gates are not invertible. Let’s look at a
very simple example for stream cipher encryption.

Example 2.1. Alice wants to encrypt the letter A, where the letter is given in ASCII
code. The ASCII value for A is 6519 = 1000001,. Let’s furthermore assume that the
first key stream bits are (so, . . .,5¢) = 0101100.

Alice Oscar Bob
X0,---,X¢ = 1000001 = A
52}
50y.-.,86 = 0101100
Y0,--.,¥6 = 1101101 =m

m=1101101
Y0,.--,¥6 = 1101101
@
$0,---,5¢ = 0101100
X0, ...,X¢ = 1000001 = A
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Note that the encryption by Alice turns the uppercase A into the lower case letter
m. Oscar, the attacker who eavesdrops on the channel, only sees the ciphertext letter
m. Decryption by Bob with the same key stream reproduces the plaintext A again.

o

So far, stream ciphers look unbelievably easy: One simply takes the plaintext,
performs an XOR operation with the key and obtains the ciphertext. On the receiving
side, Bob does the same. The “only” thing left to discuss is the last question from
above.

What Exactly Is the Nature of the Key Stream?

It turns out that the generation of the values s;, which are called the key stream, is
the central issue for the security of stream ciphers. In fact, the security of a stream
cipher completely depends on the key stream. The key stream bits s; are not the key
bits themselves. So, how do we get the key stream? Generating the key stream is
pretty much what stream ciphers are about. This is a major topic and is discussed
later in this chapter. However, we can already guess that a central requirement for
the key stream bits should be that they appear like a random sequence to an attacker.
Otherwise, an attacker Oscar could guess the bits and do the decryption by himself.
Hence, we first need to learn more about random numbers.

Historical Remark Stream ciphers were invented in 1917 by Gilbert Vernam, even
though they were not called stream ciphers back at that time. He built an elec-
tromechanical machine which automatically encrypted teletypewriter communica-
tion. The plaintext was fed into the machine as one paper tape, and the key stream
as a second tape. This was the first time that encryption and transmission was au-
tomated in one machine. Vernam studied electrical engineering at Worcester Poly-
technic Institute (WPI) in Massachusetts where, by coincidence, one of the authors
of this book was a professor in the 1990s. Stream ciphers are sometimes referred to
as Vernam ciphers. Occasionally, one-time pads are also called Vernam ciphers. For
further reading on Vernam’s machine, the book by Kahn [97] is recommended.

2.2 Random Numbers and an Unbreakable Stream Cipher

2.2.1 Random Number Generators

As we saw in the previous section, the actual encryption and decryption of stream
ciphers is extremely simple. The security of stream ciphers hinges entirely on a
“suitable” key stream sg, 51,52, . . .. Since randomness plays a major role, we will first
learn about the three types of random number generators (RNG) that are important
for us.
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True Random Number Generators (TRNG)

True random number generators (TRNGs) are characterized by the fact that their
output cannot be reproduced. For instance, if we flip a coin 100 times and record the
resulting sequence of 100 bits, it will be virtually impossible for anyone on Earth
to generate the same 100 bit sequence. The chance of success is 1/2!%, which is
an extremely small probability. TRNGs are based on physical processes. Examples
include coin flipping, rolling of dice, semiconductor noise, clock jitter in digital
circuits and radioactive decay. In cryptography, TRNGs are often needed for gener-
ating session keys, which are then distributed between Alice and Bob, and for other
purposes.

(General) Pseudorandom Number Generators (PRNG)

Pseudorandom number generators (PRNGs) generate sequences which are com-
puted from an initial seed value. Often they are computed recursively in the follow-
ing way:

so = seed
Si+1 :f(si)7 1207]7

A generalization of this are generators of the form ;1 = f(s;,8i—1,...,8—), where
t is a fixed integer. A popular example is the linear congruential generator:

so = seed

Sit1 =asi+bmodm, i=0,1,...

where a, b, m are integer constants. Note that PRNGs are not random in a true sense
because they can be computed and are thus completely deterministic. A widely used
example is the rand() function used in ANSI C. It has the parameters:

so = 12345
sip1 = 11035152455 + 12345 mod 2°!, i=0,1,...

A common requirement of PRNGs is that they possess good statistical proper-
ties, meaning their output approximates a sequence of true random numbers. There
are many mathematical tests, e.g., the chi-square test, which can verify the statistical
behavior of PRNG sequences. Note that there are many, many applications for pseu-
dorandom numbers outside cryptography. For instance, many types of simulations
or testing, e.g., of software or of VLSI chips, need random data as input. That is the
reason why a PRNG is included in the ANSI C specification.
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Cryptographically Secure Pseudorandom Number Generators (CSPRNG)

Cryptographically secure pseudorandom number generators (CSPRNGs) are a spe-
cial type of PRNG which possess the following additional property: A CSPRNG is
PRNG which is unpredictable. Informally, this means that given n output bits of the
key stream s;,S;+1,-..,Si+n—1, Where n is some integer, it is computationally infea-
sible to compute the subsequent bits s;1,,Si+n+1,-- .. A more exact definition is that
given n consecutive bits of the key stream, there is no polynomial time algorithm
that can predict the next bit s, | with better than 50% chance of success. Another
property of CSPRING is that given the above sequence, it should be computationally
infeasible to compute any preceding bits s;_1,5;—2,. ...

Note that the need for unpredictability of CSPRNGs is unique to cryptography.
In virtually all other situations where pseudorandom numbers are needed in com-
puter science or engineering, unpredictability is not needed. As a consequence, the
distinction between PRNG and CSPRN and their relevance for stream ciphers is of-
ten not clear to non-cryptographers. Almost all PRNG that were designed without
the clear purpose of being stream ciphers are not CSPRNGs.

2.2.2 The One-Time Pad

In the following we discuss what happens if we use the three types of random num-
bers as generators for the key stream sequence sg, 51,52, ... of a stream cipher. Let’s
first define what a perfect cipher should be:

Definition 2.2.1 Unconditional Security

A cryptosystem is unconditionally or information-theoretically se-
cure if it cannot be broken even with infinite computational re-
sources.

Unconditional security is based on information theory and assumes no limit on
the attacker’s computational power. This looks like a pretty straightforward defini-
tion. It is in fact straightforward, but the requirements for a cipher to be uncondi-
tionally secure are tremendous. Let’s look at it using a gedankenexperiment: As-
sume we have a symmetric encryption algorithm (it doesn’t matter whether it’s a
block cipher or stream cipher) with a key length of 10,000 bits, and the only attack
that works is an exhaustive key search, i.e, a brute-force attack. From the discussion
in Sect. 1.3.2, we recall that 128 bits are more than enough for long-term security.
So, is a cipher with 10,000 bits unconditionally secure? The answer is simple: No!
Since an attacker can have infinite computational resources, we can simply assume
that the attacker has 2'%°°° computers available and every computer checks exactly
one key. This will give us a correct key in one time step. Of course, there is no way
that 21909 computer can ever be built, the number is too large. (It is estimated that
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there are “only” about 22 atoms in the known universe.) The cipher would merely

be computationally secure but not unconditionally.
All this said, we now show a way to build an unconditionally secure cipher that
is quite simple. This cipher is called the One-Time Pad.

Definition 2.2.2 One-Time Pad (OTP)

A stream cipher for which

1. the key stream sg,s1,52,... is generated by a true random num-
ber generator, and

2. the key stream is only known to the legitimate communicating
parties, and

3. every key stream bit s; is only used once

is called a one-time pad. The one-time pad is unconditionally se-
cure.

It is easy to show why the OTP is unconditionally secure. Here is a sketch of a
proof. For every ciphertext bit we get an equation of this form:

Yo = X0+ 5o mod 2
y1 = x1 451 mod 2

Each individual relation is a linear equation modulo 2 with two unknowns. They
are impossible to solve. If the attacker knows the value for yo (0 or 1), he cannot
determine the value of xq. In fact, the solutions xg = 0 and xo = 1 are exactly equally
likely if sg stems from a truly random source and there is 50% chance that it has the
value 0 and 1. The situation is identical for the second equation and all subsequent
ones. Note that the situation is different if the values s; are not truly random. In this
case, there is some functional relationship between them, and the equations shown
above are not independent. Even though it might still be hard to solve the system of
equations, it is not provably secure!

So, now we have a simple cipher which is perfectly secure. There are rumors
that the red telephone between the White House and the Kremlin was encrypted
using an OTP during the Cold War. Obviously there must be a catch since OTPs are
not used for Web browsers, e-mail encryption, smart cards, mobile phones, or other
important applications. Let’s look at the implications of the three requirements in
Defintion 2.2.2. The first requirement means that we need a TRNG. That means we
need a device, e.g., based on white noise of a semiconductor, that generates truly
random bits. Since standard PCs do not have TRNG, this requirement might not be
that convenient but can certainly be met. The second requirement means that Alice
has to get the random bits securely to Bob. In practice that could mean that Alice
burns the true random bits on a CD ROM and sends them securely, e.g., with a
trusted courier, to Bob. Still doable, but not great. The third requirement is probably
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the most impractical one: Key stream bits cannot be re-used. This implies that we
need one key bit for every bit of plaintext. Hence, our key is as long as the plaintext!
This is probably the major drawback of the OTP. Even if Alice and Bob share a CD
with 1 MByte of true random numbers, we run quickly into limits. If they send a
single email with an attachment of 1 MByte, they could encrypt and decrypt it, but
after that they would need to exchange a true random key stream again.

For these reasons OTPs are rarely used in practice. However, they give us a great
design idea for secure ciphers: If we XOR truly random bits and plaintext, we get
ciphertext that can certainly not be broken by an attacker. We will see in the next
section how we can use this fact to build practical stream ciphers.

2.2.3 Towards Practical Stream Ciphers

In the previous section we saw that OTPs are unconditionally secure, but that they
have drawbacks which make them impractical. What we try to do with practical
stream ciphers is to replace the truly random key stream bits by a pseudorandom
number generator where the key k serves as a seed. The principle of practical stream
ciphers is shown in Fig. 2.5.

_initial key (short)

- -
k k
Alice Oscar Bob
key stream key stream
generator generator
Si Si
Xn - X0 X Vi insecure channel Vi Xn -+ X0 X1

N D N -

Fig. 2.5 Practical stream ciphers

Before we turn to stream ciphers used in the real world, it should be stressed that
practical stream ciphers are not unconditionally secure. In fact, all known practical
crypto algorithms (stream ciphers, block ciphers, public-key algorithms) are not
unconditionally secure. The best we can hope for is computational security, which
we define as follows:

Definition 2.2.3 Computational Security
A cryptosystem is computationally secure if the best known algo-
rithm for breaking it requires at least t operations.
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This seems like a reasonable definition, but there are still several problems with
it. First, often we do not know what the best algorithm for a given attack is. A
prime example is the RSA public-key scheme, which can be broken by factoring
large integers. Even though many factoring algorithms are known, we do not know
whether there exist any better ones. Second, even if a lower bound on the complexity
of one attack is known, we do not know whether any other, more powerful attacks
are possible. We saw this in Sect. 1.2.2 during the discussion about the substitution
cipher: Even though we know the exact computational complexity for an exhaustive
key search, there exist other more powerful attacks. The best we can do in practice
is to design crypto schemes for which it is assumed that they are computationally
secure. For symmetric ciphers this usually means one hopes that there is no attack
method with a complexity better than an exhaustive key search.

Let’s go back to Fig. 2.5. This design emulates (‘“behaves like”) a one-time pad.
It has the major advantage over the OTP that Alice and Bob only need to exchange a
secret key that is at most a few 100 bits long, and that does not have to be as long as
the message we want to encrypt. We now have to think carefully about the properties
of the key stream sg,s1,52,... that is generated by Alice and Bob. Obviously, we
need some type of random number generator to derive the key stream. First, we note
that we cannot use a TRNG since, by definition, Alice and Bob will not be able to
generate the same key stream. Instead we need deterministic, i.e., pseudorandom,
number generators. We now look at the other two generators that were introduced
in the previous section.

Building Key Streams from PRNGs

Here is an idea that seems promising (but in fact is pretty bad): Many PRNGs pos-
sess good statistical properties, which are necessary for a strong stream cipher. If
we apply statistical tests to the key stream sequence, the output should pretty much
behave like the bit sequence generated by tossing a coin. So it is tempting to assume
that a PRNG can be used to generate the key stream. But all of this is not sufficient
for a stream cipher since our opponent, Oscar, is smart. Consider the following at-
tack:

Example 2.2. Let’s assume a PRNG based on the linear congruential generator:

So = seed
Sit1 =AS;+Bmodm, i=0,1,...

where we choose m to be 100 bits long and S;,A,B € {0, 1,...,m—1}. Note that this
PRNG can have excellent statistical properties if we choose the parameters carefully.
The modulus m is part of the encryption scheme and is publicly known. The secret
key comprises the values (A, B) and possibly the seed Sy, each with a length of 100.
That gives us a key length of 200 bit, which is more than sufficient to protect against
a brute-force attack. Since this is a stream cipher, Alice can encrypt:
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yi =x; + s; mod 2

where s; are the bits of the binary representation of the PRNG output symbols S ;.

But Oscar can easily launch an attack. Assume he knows the first 300 bits of
plaintext (this is only 300/8=37.5 byte), e.g., file header information, or he guesses
part of the plaintext. Since he certainly knows the ciphertext, he can now compute
the first 300 bits of key stream as:

si=yi +ximodm , i=1,2,...,300

These 300 bits immediately give the first three output symbols of the PRNG: S| =
(s1,--+55100), S2 = (8101, - - - ,5200) and S3 = (s201,- - - , 5300 ). Oscar can now generate
two equations:

S> =AS1+Bmodm
S3 =AS,+B modm

This is a system of linear equations over Z,, with two unknowns A and B. But those
two values are the key, and we can immediately solve the system, yielding:

A= (52753)/(51 752) mod m
B=5—51(5—53)/(S1 —S,) mod m

In case ged((S1 —S2),m)) # 1 we get multiple solutions since this is an equation sys-

tem over Z,,. However, with a fourth piece of known plaintext the key can uniquely

be detected in almost all cases. Alternatively, Oscar simply tries to encrypt the mes-

sage with each of the multiple solutions found. Hence, in summary: if we know a

few pieces of plaintext, we can compute the key and decrypt the entire ciphertext!
o

This type of attack is why the notation of CSPRNG was invented.

Building Key Streams from CSPRNGs

What we need to do to prevent the attack above is to use a CSPRNG, which assures
that the key stream is unpredictable. We recall that this means that given the first n
output bits of the key stream s1,s2,...,S,, it is computationally infeasible to com-
pute the bits s,41,5,+2,.... Unfortunately, pretty much all pseudorandom number
generators that are used for applications outside cryptography are not cryptograph-
ically secure. Hence, in practice, we need to use specially designed pseudorandom
number generators for stream ciphers.

The question now is how practical stream ciphers actually look. There are many
proposals for stream ciphers out in the literature. They can roughly be classified as
ciphers either optimized for software implementation or optimized for hardware im-
plementation. In the former case, the ciphers typically require few CPU instructions
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to compute one key stream bit. In the latter case, they tend to be based on operations
which can easily be realized in hardware. A popular example is shift registers with
feedback, which are discussed in the next section. A third class of stream ciphers
is realized by using block ciphers as building blocks. The cipher feedback mode,
output feedback mode and counter mode to be introduced in Chap. 5 are examples
of stream ciphers derived from block ciphers.

It could be argued that the state-of-the-art in block cipher design is more ad-
vanced than stream ciphers. Currently it seems to be easier for scientists to design
“secure” block ciphers than stream ciphers. Subsequent chapters deal in great detail
with the two most popular and standardized block ciphers, DES and AES.

2.3 Shift Register-Based Stream Ciphers

As we have learned so far, practical stream ciphers use a stream of key bits 51,52, ..
that are generated by the key stream generator, which should have certain properties.
An elegant way of realizing long pseudorandom sequences is to use linear feedback
shift registers (LFSRs). LFSRs are easily implemented in hardware and many, but
certainly not all, stream ciphers make use of LESRs. A prominent example is the
AS5/1 cipher, which is standardized for voice encryption in GSM. As we will see,
even though a plain LFSR produces a sequence with good statistical properties, it
is cryptographically weak. However, combinations of LFSRs, such as A5/1 or the
cipher Trivium, can make secure stream ciphers. It should be stressed that there
are many ways for constructing stream ciphers. This section only introduces one of
several popular approaches.

2.3.1 Linear Feedback Shift Registers (LFSR)

An LFSR consists of clocked storage elements (flip-flops) and a feedback path. The
number of storage elements gives us the degree of the LFSR. In other words, an
LFSR with m flip-flops is said to be of degree m. The feedback network computes
the input for the last flip-flop as XOR-sum of certain flip-flops in the shift register.

Example 2.3. Simple LFSR We consider an LFSR of degree m = 3 with flip-flops
FF,, FF|, FFy, and a feedback path as shown in Fig. 2.6. The internal state bits are
denoted by s; and are shifted by one to the right with each clock tick. The rightmost
state bit is also the current output bit. The leftmost state bit is computed in the
feedback path, which is the XOR sum of some of the flip-flop values in the previous
clock period. Since the XOR is a linear operation, such circuits are called linear
feedback shift registers. If we assume an initial state of (s, = 1,s; = 0,50 = 0),
Table 2.2 gives the complete sequence of states of the LFSR. Note that the rightmost
column is the output of the LFSR. One can see from this example that the LFSR
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D
A

FF, FF, FF,

52 R = Sp = Si- 515

Fig. 2.6 Linear feedback shift register of degree 3 with initial values sz, s1, So

Table 2.2 Sequence of states of the LFSR

ClkFF2 FF1 FF():SI‘
o160 0
1101 0
21110 1
311 |1 0
411 |1 1
5101 1
61010 1
71110 0
810 |1 0

starts to repeat after clock cycle 6. This means the LFSR output has period of length
7 and has the form:
0010111 0010111 0010111 ...

There is a simple formula which determines the functioning of this LFSR. Let’s
look at how the output bits s; are computed, assuming the initial state bits s, s1,57:

§3 = 51+ 50 mod 2
s> +s51 mod 2

84

S5 = s34+ 5, mod 2
In general, the output bit is computed as:
Si+3 = Si+1 +5; mod 2

where i =0,1,2,...
o

This was, of course, a simple example. However, we could already observe many
important properties. We will now look at general LFSRs.
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A Mathematical Description of LFSRs

The general form of an LFSR of degree m is shown in Fig. 2.7. It shows m flip-flops
and m possible feedback locations, all combined by the XOR operation. Whether a
feedback path is active or not, is defined by the feedback coefficient po, p1,...,Pm-1:

m If p; = 1 (closed switch), the feedback is active.
m If p; = 0 (open switch), the corresponding flip-flop output is not used for the
feedback.

With this notation, we obtain an elegant mathematical description for the feedback
path. If we multiply the output of flip-flop i by its coefficient p;, the result is either
the output value if p; = 1, which corresponds to a closed switch, or the value zero if
pi = 0, which corresponds to an open switch. The values of the feedback coefficients
are crucial for the output sequence produced by the LFSR.

N . .. Mw
R=— Pu-1 Po R=— 11
FFp FF, FF,
Smet | 50 ‘ s S80S
: : :
CLK - - - - - 8 4777777771
Fig. 2.7 General LFSR with feedback coefficients p; and initial values s,,,—1,...,So

Let’s assume the LFSR is initially loaded with the values sy, ...,s;,—1. The next
output bit of the LFSR s,,, which is also the input to the leftmost flip-flop, can be
computed by the XOR-sum of the products of flip-flop outputs and corresponding
feedback coefficient:

Sm = Sm—1Pm—1+ - +51p1+sopo mod 2
The next LFSR output can be computed as:

Sma1 = SmPm—1+---+52p1 +51po mod 2

In general, the output sequence can be described as:

m—1

Sitm =, pj-sivjmod 2;  s;,p; €{0,1};i=0,1,2,... (2.1)
j=0

Clearly, the output values are given through a combination of some previous output
values. LFSRs are sometimes referred to as linear recurrences.
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Due to the finite number of recurring states, the output sequence of an LFSR re-
peats periodically. This was also illustrated in Example 2.3. Moreover, an LFSR can
produce output sequences of different lengths, depending on the feedback coeffi-
cients. The following theorem gives us the maximum length of an LFSR as function
of its degree.

Theorem 2.3.1 The maximum sequence length generated by an
LFSR of degree m is 2" — 1.

It is easy to show that this theorem holds. The stafe of an LFSR is uniquely deter-
mined by the m internal register bits. Given a certain state, the LFSR deterministi-
cally assumes its next state. Because of this, as soon as an LFSR assumes a previous
state, it starts to repeat. Since an m-bit state vector can only assume 2™ — 1 nonzero
states, the maximum sequence length before repetition is 2 — 1. Note that the all-
zero state must be excluded. If an LFSR assumes this state, it will get “stuck” in
it, i.e., it will never be able to leave it again. Note that only certain configurations
(po, - - -, Pm—1) yield maximum length LFSRs. We give a small example for this be-
low.

Example 2.4. LFSR with maximum-length output sequence
Given an LFSR of degree m = 4 and the feedback path (p3 = 0,p» = 0,p; =
1,po = 1), the output sequence of the LFSR has a period of 2" — 1 = 15, i.e., it
is a maximum-length LFSR.

o

Example 2.5. LFSR with non-maximum output sequence
Given an LFSR of degree m =4 and (p3 =1,p, =1, p; = 1, pg = 1), then the output
sequence has period of 5; therefore, it is not a maximum-length LFSR. ¢

The mathematical background of the properties of LFSR sequences is beyond
the scope of this book. However, we conclude this introduction to LFSRs with some
additional facts. LESRs are often specified by polynomials using the following no-
tation: An LFSR with a feedback coefficient vector (py—1,...,p1, po) is represented
by the polynomial

P(x) = X"+ p1xX™ . prx+ po

For instance, the LFSR from the example above with coefficients (p3 = 0,p; =
0,p1 = 1,pp = 1) can alternatively be specified by the polynomial x* + x + 1.
This seemingly odd notation as a polynomial has several advantages. For instance,
maximum-length LFSRs have what is called primitive polynomials. Primitive poly-
nomials are a special type of irreducible polynomial. Irreducible polynomials are
roughly comparable with prime numbers, i.e., their only factors are 1 and the
polynomial itself. Primitive polynomials can relatively easily be computed. Hence,
maximum-length LFSRs can easily be found. Table 2.3 shows one primitive poly-
nomial for every value of m in the range from m = 2,3,...,128. As an example,
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the notation (0,2,5) refers to the polynomial 1+ x>+ x°. Note that there are many
primitive polynomials for every given degree m. For instance, there exist 69,273,666
different primitive polynomials of degree m = 31.

Table 2.3 Primitive polynomials for maximum-length LESRs

(0,1,2) (0,1,3424) (0,1,46)  (0,1,5.7.68) (0,2,3,590) (0,3,4,5,112)
(0,1,3) (0325 (0547  (0.2,5.6,69) (0,1,5891) (0,2,3,5113)
(0,1,4) (0,1,3,4,26) (0,2,3,5.48) (0,1,3,5,70) (0,2,5,6,92) (0,2,3,5,114)
(0.2,5) (0,1,2,527) (0,4,5,6,49) (0,1,3,571) (0,2,93) (0,5,7.8,115)
(0,1,6) (0,1,28)  (0,2,3,4,50) (0,3,9,10,72) (0,1,5,6,94) (0,1,2.4,116)
(0,1,7) 0229)  (0,1,3,6,51) (0.2,34.73) (0,11,95)  (0,1,2,5,117)
(0,1,34.8) (0,1,30)  (03,52)  (0,1,2,6,74) (0,6,9,10,96) (0,2,5.6,118)
(0.1,9) 0331)  (0,12,6,53) (0,1,3,6,75) (0,6,97) (0,8,119)

(0,3,10) 0,2,3,7,32) (0,3,6,8,54) (0,2,4,5,76) (0,3,4,7,98) (0,1,3,4,120)
0,2,11) (0,1,3,6,33) (0,1,2,6,55) (0,2,5,6,77) (0,1,3,6,99) (0,1,5,8,121)
(0,3,12) (0,1,3,4,34) (0,2,4,7,56) (0,1,2,7,78) (0,2,5,6,100) (0,1,2,6,122)

(0,1,3,4,13) (0,2,35)

0457 (02,3.479)

(0,1,6,7,101) (0,2,123)

(0,5,14) (0,2,4,5,36) (0,1,5,6,58) (0,2,4,9,80) (0,3,5,6,102) (0,37,124)
(0,1,15) (0,1,4,6,37) (0,2,4,7,59) (0,4,81) (0,9,103) (0,5,6,7,125)
(0,1,3,5,16) (0,1,5,6,38) (0,1,60) (0,4,6,9,82) (0,1,3,4,104) (0,2,4,7,126)
(0,3,17) (0,4,39) (0,1,2,5,61) (0,2,4,7,83) (0,4,105) (0,1,127)
(0,3,18) (0,3.4,5,40) (0,3,5,6,62) (0,5,84) (0,1,5,6,106) (0,1,2,7,128)
(0,1,2,5,19) (0,3,41) (0,1,63) (0,1,2,8,85) (0,4,7,9,107)

(0,3,20) 0,1,2,5,42) (0,1,3,4,64) (0,2,5,6,86) (0,1,4,6,108)

0,2,21) (0,3,4,6,43) (0,1,3,4,65) (0,1,5,7,87) (0,2,4,5,109)

(0,1,22) (0,5,44) (0,3,66) (0,8,9,11,88) (0,1,4,6,110)

(0,5,23) (0,1,3,4,45) (0,1,2,5,67) (0,3,5,6,89) (0,2,4,7,111)

2.3.2 Known-Plaintext Attack Against Single LFSRs

As indicated by its name, LFSRs are linear. Linear systems are governed by linear
relationships between their inputs and outputs. Since linear dependencies can rela-
tively easily be analyzed, this can be a major advantage, e.g., in communication sys-
tems. However, a cryptosystem where the key bits only occur in linear relationships
makes a highly insecure cipher. We will now investigate how the linear behavior of
a LFSR leads to a powerful attack.

If we use an LFSR as a stream cipher, the secret key k is the feedback coefficient
vector (Pm—1,-..,P1,P0). An attack is possible if the attacker Oscar knows some
plaintext and the corresponding ciphertext. We further assume that Oscar knows the
degree m of the LFSR. The attack is so efficient that he can easily try a large num-
ber of possible m values, so that this assumption is not a major restriction. Let the
known plaintext be given by xg,x1,...,x2,—1 and the corresponding ciphertext by
Y0, V1, - -, Y2m—1. With these 2m pairs of plaintext and ciphertext bits, Oscar recon-
structs the first 2m key stream bits:

si=xi+y;mod 2; i=0,1,...,2m—1.

The goal is now to find the key which is given by the feedback coefficients p;.
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Eq. (2.1) is a description of the relationship of the unknown key bits p; and the
key stream output. We repeat the equation here for convenience:

m—1
Sitm = ij'SH_ijd 2; S,',ij{O,l}; i=0,1,2,...
Jj=0

Note that we get a different equation for every value of i. Moreover, the equations
are linearly independent. With this knowledge, Oscar can generate m equations for
the first m values of i:

i=0, Sm = Pm—1Sm—1+ ...+ P1S1 + Poso mod 2
i=1, Smt1 = Pm—1Sm+ -+ P152+ posi mod 2
. ) o : (2.2)
i=m—1, s5p-1 = pm—152m—2+--- + P1Sm + posSm—1 mod 2
He has now m linear equations in m unknowns pg, p1, ..., Pm—1. This system can

easily be solved by Oscar using Gaussian elimination, matrix inversion or any other
algorithm for solving systems of linear equations. Even for large values of m, this
can be done easily with a standard PC.

This situation has major consequences: as soon as Oscar knows 2m output bits
of an LFSR of degree m, the p; coefficients can exactly be constructed by merely
solving a system of linear equations. Once he has computed these feedback coef-
ficients, he can “build” the LFSR and load it with any m consecutive output bits
that he already knows. Oscar can now clock the LFSR and produce the entire output
sequence. Because of this powerful attack, LFSRs by themselves are extremely inse-
cure! They are a good example of a PRNG with good statistical properties but with
terrible cryptographical ones. Nevertheless, all is not lost. There are many stream
ciphers which use combinations of several LFSRs to build strong cryptosystems.
The cipher Trivium in the next section is an example.

2.3.3 Trivium

Trivium is a relatively new stream cipher which uses an 80-bit key. It is based on a
combination of three shift registers. Even though these are feedback shift registers,
there are nonlinear components used to derive the output of each register, unlike the
LFSRs that we studied in the previous section.

Description of Trivium
As shown in Fig. 2.8, at the heart of Trivium are three shift registers, A, B and C.

The lengths of the registers are 93, 84 and 111, respectively. The XOR-sum of all
three register outputs forms the key stream s;. A specific feature of the cipher is that
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Fig. 2.8 Internal structure of the stream cipher Trivium

the output of each register is connected to the input of another register. Thus, the
registers are arranged in circle-like fashion. The cipher can be viewed as consisting
of one circular register with a total length of 93 +84 4111 = 288. Each of the three
registers has similar structure as described below.

The input of each register is computed as the XOR-sum of two bits:

m The output bit of another register according to Fig. 2.8. For instance, the output
of register A is part of the input of register B.

m One register bit at a specific location is fed back to the input. The positions are
given in Table 2.4. For instance, bit 68 of register A is fed back to its input.

The output of each register is computed as the XOR-sum of three bits:

m The rightmost register bit.

m One register bit at a specific location is fed forward to the output. The positions
are given in Table 2.4. For instance, bit 66 of register A is fed to its output.

m The output of a logical AND function whose input is two specific register bits.
Again, the positions of the AND gate inputs are given in Table 2.4.

Table 2.4 Specification of Trivium

register length|feedback bit|feedforward bit| AND inputs
A 93 69 66 91,92
B 84 78 69 82,83
C 111 87 66 109, 110

Note that the AND operation is equal to multiplication in modulo 2 arithmetic.
If we multiply two unknowns, and the register contents are the unknowns that an at-
tacker wants to recover, the resulting equations are no longer linear as they contain
products of two unknowns. Thus, the feedforward paths involving the AND opera-
tion are crucial for the security of Trivium as they prevent attacks that exploit the
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linearity of the cipher, as the one applicable to plain LESRs shown in the previous
section.

Encryption with Triviom

Almost all modern stream ciphers have two input parameters: a key k and an ini-
tialization vector /V. The former is the regular key that is used in every symmetric
crypto system. The IV serves as a randomizer and should take a new value for every
encryption session. It is important to note that the /V does not have to be kept secret,
it merely must change for every session. Such values are often referred to as nonces,
which stands for “number used once”. Its main purpose is that two key streams pro-
duced by the cipher should be different, even though the key has not changed. If this
were not the case, the following attack becomes possible. If an attacker has known
plaintext from a first encryption, he can compute the corresponding key stream. The
second encryption using the same key stream can now immediately be deciphered.
Without a changing IV, stream cipher encryption is highly deterministic. Methods
for generating /V's are discussed in Sect. 5.1.2. Let’s look at the details of running
Trivium:

Initialization Initially, an 80-bit IV is loaded into the 80 leftmost locations of reg-
ister A, and an 80-bit key is loaded in the 80 leftmost locations of register B. All
other register bits are set to zero with the exception of the three rightmost bits of
register C, i.e., bits cjq9, c110 and ¢y, which are set to 1.

Warm-up Phase In the first phase, the cipher is clocked 4 x 288 = 1152 times. No
cipher output is generated.

Encryption Phase The bits produced hereafter, i.e., starting with the output bit of
cycle 1153, form the key stream.

The warm-up phase is needed for randomizing the cipher sufficiently. It makes
sure that the key stream depends on both the key k and the /V.

An attractive feature of Trivium is its compactness, especially if implemented
in hardware. It mainly consists of a 288-bit shift register and a few Boolean oper-
ations. It is estimated that a hardware implementation of the cipher occupies and
area of between about 3500 and 5500 gate equivalences, depending on the degree
of parallelization. (A gate equivalence is the chip area occupied by a 2-input NAND
gate.) For instance, an implementation with 4000 gates computes the key stream at
a rate of 16 bits/clock cycle. This is considerably smaller than most block ciphers
such as AES and is very fast. If we assume that this hardware design is clocked at a
moderate 125 MHz, the encryption rate would be 16bit x 125MHz = 2 Gbit/sec. In
software, it is estimated that computing 8 output bits takes 12 cycles on a 1.5 GHz
Intel CPU, resulting in a theoretical encryption rate of 1 Gbit/sec.

Even though there are no known attacks at the time of writing, one should keep
in mind that Trivium is a relatively new cipher and attacks in the future are certainly
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a possibility. In the past, many other stream ciphers were found to be not secure.
More information on Trivium can be found in [164].

2.4 Discussion and Further Reading

Established Stream Ciphers Even though many stream ciphers have been pro-
posed over the years, there are considerably fewer well-investigated ones. The se-
curity of many proposed stream ciphers is unknown, and many stream ciphers have
been broken. In the case of software-oriented stream ciphers, arguably the best-
investigated ones are RC4 [144] and SEAL [120, Sect. 6.4.1]. Note that there are
some known weaknesses in RC4, even though it is still secure in practice if it is used
correctly [142]. The SEAL cipher, on the other hand, is patented.

In the case of hardware-oriented ciphers, there is a wealth of LFSR-based al-
gorithms. Many proposed ciphers have been broken; see references [8, 85] for an
introduction. Among the best-studied ones are the A5/1 and A5/2 algorithms which
are used in GSM mobile networks for voice encryption between cell phones and
base stations. A5/1, which is the cipher used in most industrialized nations, had
originally been kept secret but was reverse-engineered and published on the Internet
in 1998. The cipher is borderline secure today [22], whereas the weaker A5/2 has
much more serious flaws [11]. Neither of the two ciphers is recommended based on
today’s understanding of cryptanalysis. For 3GPP mobile communication, a differ-
ent cipher A5/3 (also named KASUMI) is used, but it is a block cipher.

This somewhat pessimistic outlook on the state-of-the-art in stream ciphers
changed with the eSSTREAM project, described below.

eSTREAM Project The eSTREAM project had the explicit goal to advance the
state-of-the-art knowledge about stream cipher design. As part of this objective,
new stream ciphers that might become suitable for widespread adoption were in-
vestigated. eSTREAM was organized by the European Network of Excellence in
Cryptography (ECRYPT). The call for stream ciphers was first issued in November
2004 and ended in 2008. The ciphers were divided into two “profiles”, depending
on the intended application:

m Profile 1: Stream ciphers for software applications with high throughput require-
ments.

m Profile 2: Stream ciphers for hardware applications with restricted resources such
as limited storage, gate count, or power consumption.

Some cryptographers had emphasized the importance of including an authentication
method, and hence two further profiles were also included to deal with ciphers that
also provide authentication.

A total of 34 candidates were submitted to eSSTREAM. At the end of the project
four software-oriented (“Profile 17) ciphers were found to have desirable properties:
HC-128, Rabbit, Salsa20/12 and SOSEMANUK. With respect to hardware-oriented
ciphers (“Profile 2”), the following three ciphers were selected: Grain vi, MICKEY
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v2 and Trivium. Note that all of these are relatively new ciphers and only time
will tell whether they are really cryptographically strong. The algorithm descrip-
tion, source code and the results of the four-year evaluation process are available
online [69], and the official book provides more detailed information [146].

It is important to keep in mind that ECRYPT is not a standardization body, so the
status of the eSTREAM finalist ciphers cannot be compared to that of AES at the
end of its selection process (cf. Sect. 4.1).

True Random Number Generation We introduced in this chapter different classes
of RNGs, and found that cryptographically secure pseudorandom number genera-
tors are of central importance for stream ciphers. For other cryptographic appli-
cations, true random number generators are important. For instance, true random
numbers are needed for the generation of cryptographic keys which are then to be
distributed. Many ciphers and modes of operation rely on initial values that are of-
ten generated from TRNGs. Also, many protocols require nonces (numbers used
only once), which may stem from a TRNG. All TRNGs need to exploit some en-
tropy source, i.e., some process which behaves truly randomly. Many TRNG designs
have been proposed over the years. They can coarsely be classified as approaches
that use specially designed hardware as an entropy source or as TRNGs that exploit
external sources of randomness. Examples of the former are circuits with random
behavior, e.g., that are based on semiconductor noise or on several uncorrelated os-
cillators. Reference [104, Chap. 5] contains a good survey. Examples of the latter
ones are computer systems which measure the times between key strokes or the
arrival times of packets at a network interface. In all these cases, one has to be ex-
tremely careful to make sure that the noise source in fact has enough entropy. There
are many examples of TRNG designs which turned out to have poor random behav-
ior and which constitute a serious security weakness, depending on how they are
used. There are tools available that test the statistical properties of TRNG output
sequences [56, 125]. There are also standards with which TRNGs can be formally
evaluated [80].

2.5 Lessons Learned

m Stream ciphers are less popular than block ciphers in most domains such as Inter-
net security. There are exceptions, for instance, the popular stream cipher RC4.

m Stream ciphers sometimes require fewer resources, e.g., code size or chip area,
for implementation than block ciphers, and they are attractive for use in con-
strained environments such as cell phones.

m The requirements for a cryprographically secure pseudorandom number gener-
ator are far more demanding than the requirements for pseudorandom number
generators used in other applications such as testing or simulation.
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m The One-Time Pad is a provable secure symmetric cipher. However, it is highly
impractical for most applications because the key length has to equal the message
length.

m Single LFSRs make poor stream ciphers despite their good statistical properties.
However, careful combinations of several LFSR can yield strong ciphers.
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Problems

2.1. The stream cipher described in Definition 2.1.1 can easily be generalized to
work in alphabets other than the binary one. For manual encryption, an especially
useful one is a stream cipher that operates on letters.

1. Develop a scheme which operates with the letters A, B,.. ., Z, represented by the
numbers 0,1,...,25. What does the key (stream) look like? What are the encryp-
tion and decryption functions?

2. Decrypt the following cipher text:
bsaspp kkuosp
which was encrypted using the key:
rsidpy dkawoa

3. How was the young man murdered?

2.2. Assume we store a one-time key on a CD-ROM with a capacity of 1 Gbyte.
Discuss the real-life implications of a One-Time-Pad (OTP) system. Address issues
such as life cycle of the key, storage of the key during the life cycle/after the life
cycle, key distribution, generation of the key, etc.

2.3. Assume an OTP-like encryption with a short key of 128 bit. This key is then
being used periodically to encrypt large volumes of data. Describe how an attack
works that breaks this scheme.

2.4. At first glance it seems as though an exhaustive key search is possible against
an OTP system. Given is a short message, let’s say 5 ASCII characters represented
by 40 bit, which was encrypted using a 40-bit OTP. Explain exactly why an exhaus-
tive key search will not succeed even though sufficient computational resources are
available. This is a paradox since we know that the OTP is unconditionally secure.
That is, explain why a brute-force attack does not work.

Note: You have to resolve the paradox! That means answers such as “The OTP
is unconditionally secure and therefore a brute-force attack does not work™ are not
valid.

2.5. We will now analyze a pseudorandom number sequence generated by a LFSR
characterized by (¢ = 1,¢1 =0,¢9 = 1).

1. What is the sequence generated from the initialization vector (s, = 1,51 = 0,50 =
0)?

2. What is the sequence generated from the initialization vector (s =0,s; = 1,50 =
1)?

3. How are the two sequences related?

2.6. Assume we have a stream cipher whose period is quite short. We happen to
know that the period is 150-200 bit in length. We assume that we do not know
anything else about the internals of the stream cipher. In particular, we should not
assume that it is a simple LFSR. For simplicity, assume that English text in ASCII
format is being encrypted.
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Describe in detail how such a cipher can be attacked. Specify exactly what Oscar
has to know in terms of plaintext/ciphertext, and how he can decrypt all ciphertext.

2.7. Compute the first two output bytes of the LFSR of degree 8 and the feedback
polynomial from Table 2.3 where the initialization vector has the value FF in hex-
adecimal notation.

2.8. In this problem we will study LFSRs in somewhat more detail. LFSRs come in
three flavors:

m LFSRs which generate a maximum-length sequence. These LFSRs are based on
primitive polynomials.

m LFSRs which do not generate a maximum-length sequence but whose sequence
length is independent of the initial value of the register. These LFSRs are based
on irreducible polynomials that are not primitive. Note that all primitive polyno-
mials are also irreducible.

m LFSRs which do not generate a maximum-length sequence and whose sequence
length depends on the initial values of the register. These LFSRs are based on
reducible polynomials.

We will study examples in the following. Determine all sequences generated by

Lx*+x+1
2. x4 2+ 1
3+ +x+1

Draw the corresponding LFSR for each of the three polynomials. Which of the
polynomials is primitive, which is only irreducible, and which one is reducible?
Note that the lengths of all sequences generated by each of the LFSRs should add
up to 2" — 1.

2.9. Given is a stream cipher which uses a single LFSR as key stream generator. The
LFSR has a degree of 256.

1. How many plaintext/ciphertext bit pairs are needed to launch a successful attack?

2. Describe all steps of the attack in detail and develop the formulae that need to be
solved.

3. What is the key in this system? Why doesn’t it make sense to use the initial
contents of the LFSR as the key or as part of the key?

2.10. We conduct a known-plaintext attack on an LFSR-based stream cipher. We
know that the plaintext sent was:

1001 0010 0110 1101 1001 0010 0110

By tapping the channel we observe the following stream:

1011 1100 0011 0001 0010 1011 0001

1. What is the degree m of the key stream generator?
2. What is the initialization vector?
3. Determine the feedback coefficients of the LFSR.
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4. Draw a circuit diagram and verify the output sequence of the LFSR.

2.11. We want to perform an attack on another LFSR-based stream cipher. In order
to process letters, each of the 26 uppercase letters and the numbers 0, 1, 2, 3, 4, 5
are represented by a 5-bit vector according to the following mapping:

A < 0 = 00000,

Z <25 =11001,
026 =11010,

5431 = 11111,

We happen to know the following facts about the system:

m The degree of the LFSR is m = 6.
m Every message starts with the header WPI.

We observe now on the channel the following message (the fourth letter is a
ZEero):
j5al0edj2b

1. What is the initialization vector?

2. What are the feedback coefficients of the LESR?

3. Write a program in your favorite programming language which generates the
whole sequence, and find the whole plaintext.

4. Where does the thing after WPT live?

5. What type of attack did we perform?

2.12. Assume the IV and the key of Trivium each consist of 80 all-zero bits. Com-
pute the first 70 bits sy,...,s79 during the warm-up phase of Trivium. Note that
these are only internal bits which are not used for encryption since the warm-up
phase lasts for 1152 clock cycles.



Chapter 3

The Data Encryption Standard (DES) and
Alternatives

The Data Encryption Standard (DES) has been by far the most popular block ci-
pher for most of the last 30 years. Even though it is nowadays not considered secure
against a determined attacker because the DES key space is too small, it is still
used in legacy applications. Furthermore, encrypting data three times in a row with
DES — a process referred to as 3DES or triple DES — yields a very secure cipher
which is still widely used today (Section 3.5 deals with 3DES.) Perhaps what is
more important, since DES is by far the best-studied symmetric algorithm, its de-
sign principles have inspired many current ciphers. Hence, studying DES helps us
to understand many other symmetric algorithms.

In this chapter you will learn:

m The design process of DES, which is very helpful for understanding the technical
and political evolution of modern cryptography

m Basic design ideas of block ciphers, including confusion and diffusion, which are
important properties of all modern block ciphers

m The internal structure of DES, including Feistel networks, S-boxes and the key
schedule

m Security analysis of DES

m Alternatives to DES, including 3DES

C. Paar, J. Pelzl, Understanding Cryptography, 55
DOI 10.1007/978-3-642-04101-3_3, (©) Springer-Verlag Berlin Heidelberg 2010
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3.1 Introduction to DES

In 1972 a mildly revolutionary act was performed by the US National Bureau of
Standards (NBS), which is now called National Institute of Standards and Tech-
nology (NIST): the NBS initiated a request for proposals for a standardized cipher
in the USA. The idea was to find a single secure cryptographic algorithm which
could be used for a variety of applications. Up to this point in time governments had
always considered cryptography, and in particular cryptanalysis, so crucial for na-
tional security that it had to be kept secret. However, by the early 1970s the demand
for encryption for commercial applications such as banking had become so pressing
that it could not be ignored without economic consequences.

The NBS received the most promising candidate in 1974 from a team of cryp-
tographers working at IBM. The algorithm IBM submitted was based on the cipher
Lucifer. Lucifer was a family of ciphers developed by Horst Feistel in the late 1960s,
and was one of the first instances of block ciphers operating on digital data. Lucifer
is a Feistel cipher which encrypts blocks of 64 bits using a key size of 128 bits.
In order to investigate the security of the submitted ciphers, the NBS requested the
help of the National Security Agency (NSA), which did not even admit its existence
at that point in time. It seems certain that the NSA influenced changes to the cipher,
which was rechristened DES. One of the changes that occurred was that DES is
specifically designed to withstand differential cryptanalysis, an attack not known to
the public until 1990. It is not clear whether the IBM team developed the knowl-
edge about differential cryptanalysis by themselves or whether they were guided by
the NSA. Allegedly, the NSA also convinced IBM to reduce the Lucifer key length
of 128 bit to 56 bit, which made the cipher much more vulnerable to brute-force
attacks.

The NSA involvement worried some people because it was feared that a secret
trapdoor, i.e., a mathematical property with which DES could be broken but which is
only known to NSA, might have been the real reason for the modifications. Another
major complaint was the reduction of the key size. Some people conjectured that
the NSA would be able to search through a key space of 2%, thus breaking it by
brute-force. In later decades, most of these concerns turned out to be unfounded.
Section 3.5 provides more information about real and perceived security weaknesses
of DES.

Despite of all the criticism and concerns, in 1977 the NBS finally released all
specifications of the modified IBM cipher as the Data Encryption Standard (FIPS
PUB 46) to the public. Even though the cipher is described down to the bit level in
the standard, the motivation for parts of the DES design (the so-called design crite-
ria), especially the choice of the substitution boxes, were never officially released.

With the rapid increase in personal computers in the early 1980s and all specifica-
tions of DES being publicly available, it become easier to analyze the inner structure
of the cipher. During this period, the civilian cryptography research community also
grew and DES underwent major scrutiny. However, no serious weaknesses were
found until 1990. Originally, DES was only standardized for 10 years, until 1987.
Due to the wide use of DES and the lack of security weaknesses, the NIST reaf-
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firmed the federal use of the cipher until 1999, when it was finally replaced by the
Advanced Encryption Standard (AES).

3.1.1 Confusion and Diffusion

Before we start with the details of DES, it is instructive to look at primitive op-
erations which can be applied in order to achieve strong encryption. According to
the famous information theorist Claude Shannon, there are two primitive operations
with which strong encryption algorithms can be built:

1. Confusion is an encryption operation where the relationship between key and
ciphertext is obscured. Today, a common element for achieving confusion is sub-
stitution, which is found in both DES and AES.

2. Diffusion is an encryption operation where the influence of one plaintext symbol
is spread over many ciphertext symbols with the goal of hiding statistical proper-
ties of the plaintext. A simple diffusion element is the bit permutation, which is
used frequently within DES. AES uses the more advanced Mixcolumn operation.

Ciphers which only perform confusion, such as the Shift Cipher (cf. Sect. 1.4.3)
or the World War II encryption machine Enigma, are not secure. Neither are ci-
phers which only perform diffusion. However, through the concatenation of such
operations, a strong cipher can be built. The idea of concatenating several encryp-
tion operation was also proposed by Shannon. Such ciphers are known as product
ciphers. All of today’s block ciphers are product ciphers as they consist of rounds
which are applied repeatedly to the data (Fig. 3.1).

Diffusion 1

Confusion 1

7

y

Diffusion 2

>

;

Diffusion N

Confusion N

y

Fig. 3.1 Principle of an N round product cipher, where each round performs a confusion and
diffusion operation

Modern block ciphers possess excellent diffusion properties. On a cipher level
this means that changing of one bit of plaintext results on average in the change of
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half the output bits, i.e., the second ciphertext looks statistically independent of the
first one. This is an important property to keep in mind when dealing with block
ciphers. We demonstrate this behavior with the following simple example.

Example 3.1. Let’s assume a small block cipher with a block length of 8 bits. En-
cryption of two plaintexts x; and x,, which differ only by one bit, should roughly
result in something as shown in Fig. 3.2.

X, =0010 1011 S vy, = 1011 1001
I oC ipher —
X, = 0000 1011 P 5 =0110 1100

Fig. 3.2 Principle of diffusion of a block cipher

Note that modern block ciphers have block lengths of 64 or 128 bit but they show
exactly the same behavior if one input bit is flipped.
o

3.2 Overview of the DES Algorithm

DES is a cipher which encrypts blocks of length of 64 bits with a key of size of 56
bits (Fig. 3.3).

X
% o
56

DES &k

Fig. 3.3 DES block cipher

DES is a symmetric cipher, i.e., the same same key is used for encryption and
decryption. DES is, like virtually all modern block ciphers, an iterative algorithm.
For each block of plaintext, encryption is handled in 16 rounds which all perform
the identical operation. Figure 3.4 shows the round structure of DES. In every round
a different subkey is used and all subkeys k; are derived from the main key k.

Let’s now have a more detailed view on the internals of DES, as shown in
Fig. 3.5.The structure in the figure is called a Feistel network. It can lead to very
strong ciphers if carefully designed. Feistel networks are used in many, but cer-
tainly not in all, modern block ciphers. (In fact, AES is not a Feistel cipher.) In
addition to its potential cryptographic strength, one advantage of Feistel networks is
that encryption and decryption are almost the same operation. Decryption requires
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Fig. 3.4 Iterative structure of DES

only a reversed key schedule, which is an advantage in software and hardware im-
plementations. We discuss the Feistel network in the following.

After the initial bitwise permutation /P of a 64-bit plaintext x, the plaintext is
split into two halves Ly and Ry. These two 32-bit halves are the input to the Feistel
network, which consists of 16 rounds. The right half R; is fed into the function
f- The output of the f function is XORed (as usually denoted by the symbol @)
with the left 32-bit half Z;. Finally, the right and left half are swapped. This process
repeats in the next round and can be expressed as:

L[ = Ri*lv
R =L 1®f(Ri_1,ki)

where i= 1,...,16. After round 16, the 32-bit halves L and R4 are swapped again,
and the final permutation /P~ is the last operation of DES. As the notation suggests,
the final permutation /P! is the inverse of the initial permutation IP. In each round,
a round key k; is derived from the main 56-bit key using what is called the key
schedule.

It is crucial to note that the Feistel structure really only encrypts (decrypts) half
of the input bits per each round, namely the left half of the input. The right half
is copied to the next round unchanged. In particular, the right half is not encrypted
with the f function. In order to get a better understanding of the working of Feistel
cipher, the following interpretation is helpful: Think of the f function as a pseu-
dorandom generator with the two input parameters R;_; and k;. The output of the
pseudorandom generator is then used to encrypt the left half L;_; with an XOR op-
eration. As we saw in Chap. 2, if the output of the f function is not predictable for
an attacker, this results in a strong encryption method.



60 3 The Data Encryption Standard (DES) and Alternatives

Plaintext x Key k

64 64

Initial Permutation PC-1

IP(x)

56

L R,

3 3]

Transform 1
32

'

48

S

Round 1 3 56

—
e

L
L

32 48

Transform 16
32
M Li—« kig

Final Permutation
P

Round 16

0
32
32
1
15 Ris ‘
32
32
16

Ciphertext
v = DES;(x)

Fig. 3.5 The Feistel structure of DES

The two aforementioned basic properties of ciphers, i.e., confusion and diffusion,
are realized within the f-function. In order to thwart advanced analytical attacks,
the f-function must be designed extremely carefully. Once the f-function has been
designed securely, the security of a Feistel cipher increases with the number of key
bits used and the number of rounds.

Before we discuss all components of DES in detail, here is an algebraic descrip-
tion of the Feistel network for the mathematically inclined reader. The Feistel struc-
ture of each round bijectively maps a block of 64 input bits to 64 output bits (i.e.,
every possible input is mapped uniquely to exactly one output, and vice versa). This
mapping remains bijective for some arbitrary function f, i.e., even if the embedded
function f is not bijective itself. In the case of DES, the function f is in fact a sur-
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jective (many-to-one) mapping. It uses nonlinear building blocks and maps 32 input
bits to 32 output bits using a 48-bit round key k;, with 1 <i < 16.

3.3 Internal Structure of DES

The structure of DES as depicted in Fig. 3.5 shows the internal functions which we
will discuss in this section. The building blocks are the initial and final permutation,
the actual DES rounds with its core, the f-function, and the key schedule.

3.3.1 Initial and Final Permutation

As shown in Figs. 3.6 and 3.7, the initial permutation IP and the final permuta-
tion IP~! are bitwise permutations. A bitwise permutation can be viewed as simple
crosswiring. Interestingly, permutations can be very easily implemented in hardware
but are not particularly fast in software. Note that both permutations do not increase
the security of DES at all. The exact rationale for the existence of these two permu-
tations is not known, but it seems likely that their original purpose was to arrange
the plaintext, ciphertext and bits in a bytewise manner to make data fetches easier
for 8-bit data busses, which were the state-of-the-art register size in the early 1970s.

BE | o fm
1 40

Fig. 3.6 Examples for the bit swaps of the initial permutation

| R R I
1 50 58 64

Fig. 3.7 Examples for the bit swaps of the final permutation

The details of the transformation /P are given in Fig. 3.8. This table, like all other
tables in this chapter, should be read from left to right, top to bottom. The table
indicates that input bit 58 is mapped to output position 1, input bit 50 is mapped to
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the second output position, and so forth. The final permutation /P~! performs the
inverse operation of /P as shown in Fig. 3.9.

P P!
58 50 42 34 26 18 10 2 40 8 48 16 56 24 64 32
60 52 44 36 28 20 12 4 39747 15 55 23 63 31
62 54 46 383022 14 6 38 6 46 14 54 22 62 30
64 56 48 40 3224 16 8 37 5451353216129
574941332517 9 1 36 4 44 12 52 20 60 28
595143352719 113 35343 11511959 27
61 5345372921135 34 2 42 10 50 18 58 26
63 5547393123157 33141 9 49175725
Fig. 3.8 Initial permutation /P Fig. 3.9 Final permutation /P~

3.3.2 The f-Function

As mentioned earlier, the f-function plays a crucial role for the security of DES.
In round i it takes the right half R;_; of the output of the previous round and the
current round key k; as input. The output of the f-function is used as an XOR-mask
for encrypting the left half input bits L;_.

Ri;

J{sz

Expansion
E(R;;)

48

Fig. 3.10 Block diagram of the f-function
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The structure of the f-function is shown in Fig. 3.10. First, the 32-bit input is ex-
panded to 48 bits by partitioning the input into eight 4-bit blocks and by expanding
each block to 6 bits. This happens in the E-box, which is a special type of permuta-
tion. The first block consists of the bits (1,2,3,4), the second one of (5,6,7,8), etc.
The expansion to six bits can be seen in Fig. 3.11.

[1]2]3]4]s]s]7]8]9] [32]

[i]23]4]s]ef7]s]oio]ufifi3[is] ... Jar| ]

Fig. 3.11 Examples for the bit swaps of the expansion function E

As can be seen from the Table 3.1, exactly 16 of the 32 input bits appear twice in
the output. However, an input bit never appears twice in the same 6-bit output block.
The expansion box increases the diffusion behavior of DES since certain input bits
influence two different output locations.

Table 3.1 Expansion permutation £

3
4
8

3]
© U —
J== )
- N w
Boo-lk
> O W

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
2829303132 1

Next, the 48-bit result of the expansion is XORed with the round key k;, and
the eight 6-bit blocks are fed into eight different substition boxes, which are often
referred to as S-boxes. Each S-box is a lookup table that maps a 6-bit input to a
4-bit output. Larger tables would have been cryptographically better, but they also
become much larger; eight 4-by-6 tables were probably close the maximum size
which could be fit on a single integrated circuit in 1974. Each S-box contains 2° = 64
entries, which are typically represented by a table with 16 columns and 4 rows. Each
entry is a 4-bit value. All S-boxes are listed in Tables 3.2 to 3.9. Note that all S-boxes
are different. The tables are to be read as indicated in Fig. 3.12: the most significant
bit (MSB) and the least significant bit (LSB) of each 6-bit input select the row of
the table, while the four inner bits select the column. The integers 0,1,...,15 of each
entry in the table represent the decimal notation of a 4-bit value.
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Example 3.2. The S-box input b = (100101), indicates the row 11, = 3 (i.e., fourth
row, numbering starts with 00,) and the column 0010, = 2 (i.e., the third column).
If the input b is fed into S-box 1, the output is S; (37 = 100101, ) = 8 = 1000,.

= 11 fourth row

[ofof o] ]

—= 0010 third column

Fig. 3.12 Example of the decoding of the input 100101, by S-box 1

Table 3.2 S-box S

0123456 789 101112131415
14 04 1301 02 15 11 08 03 10 06 12 05 09 00 07
00 15 07 04 14 02 13 01 10 06 12 11 09 05 03 08
04 01 14 08 13 06 02 11 15 12 09 07 03 10 05 00
15 12 08 02 04 09 01 07 05 11 03 14 10 00 06 13

L»)[\)»—-O_C(;

Table 3.3 S-box S>

0123456 789 101112131415
1501 08 14 06 11 03 04 09 07 02 13 12 00 05 10
03 13 04 07 1502 08 14 12 00 01 10 06 09 11 05
00 14 07 11 10 04 13 01 05 08 12 06 09 03 02 15
13 08 10 01 03 15 04 02 11 06 07 12 00 05 14 09

W= Ol
N

Table 3.4 S-box S3

0123456 789 101112131415
10 00 09 14 06 03 15 05 01 13 12 07 11 04 02 08
13 07 00 09 03 04 06 10 02 08 05 14 12 11 15 01
13 06 04 09 08 15 03 00 11 01 02 12 05 10 14 07
01 10 13 00 06 09 08 07 04 15 14 03 11 05 02 12

W N = Ol
@

The S-boxes are the core of DES in terms of cryptographic strength. They are
the only nonlinear element in the algorithm and provide confusion. Even though the
entire specification of DES was released by NBS/NIST in 1977, the motivation for
the choice of the S-box tables was never completely revealed. This often gave rise
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Table 3.5 S-box S4

S40 1 23 456 7 89 101112131415
07 13 14 03 00 06 09 10 01 02 08 05 11 12 04 15
1308 11 05 06 15 00 03 04 07 02 12 01 10 14 09
10 06 09 00 12 11 07 13 15 01 03 14 05 02 08 04
03 1500 06 10 01 13 08 09 04 05 11 12 07 02 14

W= O

Table 3.6 S-box Ss

0123456 789 101112131415
02 12 04 01 07 10 11 06 08 05 03 15 13 00 14 09
14 11 02 12 04 07 13 01 05 00 15 10 03 09 08 06
04 02 01 11 10 13 07 08 15 09 12 05 06 03 00 14
11 08 12 07 01 14 02 13 06 15 00 09 10 04 05 03

W= Ol
W

Table 3.7 S-box S¢

0123456 7389 101112131415
12 01 10 15 09 02 06 08 00 13 03 04 14 07 05 11
10 15 04 02 07 12 09 05 06 01 13 14 00 11 03 08
09 14 15 05 02 08 12 03 07 00 04 10 01 13 11 06
04 03 02 1209 05 15 10 11 14 01 07 06 00 08 13

W= Ol
=N

Table 3.8 S-box S7

0123456 789 101112131415
04 11 02 14 1500 08 13 03 12 09 07 05 10 06 01
13 00 11 07 04 09 01 10 14 03 05 12 02 15 08 06
01 04 11 13 12 03 07 14 10 15 06 08 00 05 09 02
06 11 13 08 01 04 10 07 09 05 00 15 14 02 03 12

W= Ol
~

Table 3.9 S-box Sg

01234567 89 101112131415
1302 08 04 06 15 11 01 10 09 03 14 05 00 12 07
01 15 13 08 10 03 07 04 12 05 06 11 00 14 09 02
07 11 04 01 09 12 14 02 00 06 10 13 15 03 05 08
02 01 14 07 04 10 08 13 15 12 09 00 03 05 06 11

LH[\)'—‘OOCOA

to speculation, in particular with respect to the possible existence of a secret back
door or some other intentionally constructed weakness, which could be exploited by
the NSA. However, now we know that the S-boxes were designed according to the
criteria listed below.

1. Each S-box has six input bits and four output bits.

2. No single output bit should be too close to a linear combination of the input bits.

3. If the lowest and the highest bits of the input are fixed and the four middle bits
are varied, each of the possible 4-bit output values must occur exactly once.

4. If two inputs to an S-box differ in exactly one bit, their outputs must differ in at
least two bits.
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5. If two inputs to an S-box differ in the two middle bits, their outputs must differ
in at least two bits.

6. If two inputs to an S-box differ in their first two bits and are identical in their last
two bits, the two outputs must be different.

7. For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs
of inputs exhibiting that difference may result in the same output difference.

8. A collision (zero output difference) at the 32-bit output of the eight S-boxes is
only possible for three adjacent S-boxes.

Note that some of these design criteria were not revealed until the 1990s. More
information about the issue of the secrecy of the design criteria is found in Sect. 3.5.

The S-boxes are the most crucial elements of DES because they introduce a non-
linearity to the cipher, i.e.,

S(a) ®S(b) # S(a®b).

Without a nonlinear building block, an attacker could express the DES input and
output with a system of linear equations where the key bits are the unknowns. Such
systems can easily be solved, a fact that was used in the LFSR attack in Sect. 2.3.2.
However, the S-boxes were carefully designed to also thwart advanced mathematical
attacks, in particular differential cryptanalysis. Interestingly, differential cryptanal-
ysis was first discovered in the research community in 1990. At this point, the IBM
team declared that the attack was known to the designers at least 16 years earlier,
and that DES was especially designed to withstand differential cryptanalysis.

Finally, the 32-bit output is permuted bitwise according to the P permutation,
which is given in Table 3.10. Unlike the initial permutation /P and its inverse /P!,
the permutation P introduces diffusion because the four output bits of each S-box
are permuted in such a way that they affect several different S-boxes in the follow-
ing round. The diffusion caused by the expansion, S-boxes and the permutation P
guarantees that every bit at the end of the fifth round is a function of every plaintext
bit and every key bit. This behavior is known as the avalanche effect.

Table 3.10 The permutation P within the f-function

P
16 7 2021 29 12 28 17
1 152326 5 183110
2 8241432273 9
191330 6 2211 4 25
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3.3.3 Key Schedule

The key schedule derives 16 round keys k;, each consisting of 48 bits, from the
original 56-bit key. Another term for round key is subkey. First, note that the DES
input key is often stated as 64-bit, where every eighth bit is used as an odd parity
bit over the preceding seven bits. It is not quite clear why DES was specified that
way. In any case, the eight parity bits are not actual key bits and do not increase the
security. DES is a 56-bit cipher, not a 64-bit one.

As shown in Fig. 3.13, the 64-bit key is first reduced to 56 bits by ignoring every
eighth bit, i.e., the parity bits are stripped in the initial PC — 1 permutation. Again,
the parity bits certainly do not increase the key space! The name PC — 1 stands for
“permuted choice one”. The exact bit connections that are realized by PC — 1 are
given in Table 3.11.

64

P = parity bit

Fig. 3.13 Location of the eight parity bits for a 64-bit input key

Table 3.11 Initial key permutation PC — 1

PC—1
574941332517 9 1
58 50 42 3426 18 10 2
5951433527 1911 3
60 52 44 36 63 55 47 39
312315 7 6254 46 38
3022 14 6 61 53 4537
292113 5 282012 4

The resulting 56-bit key is split into two halves Cyp and Dy, and the actual key
schedule starts as shown in Fig. 3.14. The two 28-bit halves are cyclically shifted,
i.e., rotated, left by one or two bit positions depending on the round i according to
the following rules:

m Inroundsi=1,2,9,16, the two halves are rotated left by one bit.
m In the other rounds where i # 1,2,9, 16, the two halves are rotated left by two
bits.

Note that the rotations only take place within either the left or the right half. The
total number of rotation positions is 4 -1+ 12 -2 = 28. This leads to the interesting
property that Co = Cj¢ and Dy = D1¢. This is very useful for the decryption key
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schedule where the subkeys have to be generated in reversed order, as we will see
in Sect. 3.4.

| ; |
64
Y
| PC-1 |
56
Y

L < D, |
e I e
, Transform 1 1 3 ! 8 |
| I
| I
! Ls, O LS, O l
} |
| I
| 28 28 :
1 | y !
k, PC-2 ¢ ‘ D, ‘ !
w e L B P

y Y
LS2 O LS2 O
LS ¢ O LS O
ki PC-2 Cis ‘ D ‘
48 56

Fig. 3.14 Key schedule for DES encryption

To derive the 48-bit round keys k;, the two halves are permuted bitwise again
with PC — 2, which stands for “permuted choice 2”. PC — 2 permutes the 56 input
bits coming from C; and D; and ignores 8 of them. The exact bit-connections of
PC —2 are given in Table 3.12.

Table 3.12 Round key permutation PC — 2

PC-2
141711241 5 3 28
15 6 2110231912 4
26 8 16 7 272013 2
41 52 31 37 47 55 30 40
5145 33 48 44 49 39 56
34 53 46 42 50 36 29 32
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Note that every round key is a selection of 48 permuted bits of the input key &.
The key schedule is merely a method of realizing the 16 permutations systemati-
cally. Especially in hardware, the key schedule is very easy to implement. The key
schedule is also designed so that each of the 56 key bits is used in different round
keys; each bit is used in approximately 14 of the 16 round keys.

3.4 Decryption

One advantage of DES is that decryption is essentially the same function as en-
cryption. This is because DES is based on a Feistel network. Figure 3.15 shows a
block diagram for DES decryption. Compared to encryption, only the key schedule
is reversed, i.e., in decryption round 1, subkey 16 is needed; in round 2, subkey 15;
etc. Thus, when in decryption mode, the key schedule algorithm has to generate the
round keys as the sequence ki¢,k15, ..., k.

Reversed Key Schedule

The first question that we have to clarify is how, given the initial DES key k, can we
easily generate k1¢? Note that we saw above that Cy = Cj and Dy = D¢. Hence k14
can be directly derived after PC — 1.

kig = PC —2(C16,D16)
= PC—Z(C(),D())
— PC—2(PC—1(k))

To compute k15 we need the intermediate variables C;5 and D5, which can be de-
rived from Cig, D¢ through cyclic right shifts (RS):

kis = PC—2(Cis,D1s)
= PC—2(RS$»(Ci),RS>(D15))
= PC —2(RS>2(Cy),RS2(Dy))

The subsequent round keys ki4,k13,...,k; are derived via right shifts in a similar
fashion. The number of bits shifted right for each round key in decryption mode

m In decryption round 1, the key is not rotated.

m In decryption rounds 2, 9, and 16 the two halves are rotated right by one bit.

m In the other rounds 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14 and 15 the two halves are
rotated right by two bits.

Figure 3.16 shows the reversed key schedule for decryption.
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Ciphertext
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32 32 48
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Round 1 32 56
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P70
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x= DESE' ()

Fig. 3.15 DES decryption

Decryption in Feistel Networks

We have not addressed the core question: Why is the decryption function essentially
the same as the encryption function? The basic idea is that the decryption function
reverses the DES encryption in a round-by-round manner. That means that decryp-
tion round 1 reverses encryption round 16, decryption round 2 reverses encryption
round 15, and so on. Let’s first look at the initial stage of decryption by looking at
Fig. 3.15. Note that the right and left halves are swapped in the last round of DES:

(L4, RY) = IP(Y) = IP(IP"'(Ry6,L16)) = (Ri6,L16)
And thus:

L =Ry
R} =Lis=Rs
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Fig. 3.16 Reversed key schedule for decryption of DES

Note that all variables in the decryption routine are marked with the superscript
d, whereas the encryption variables do not have superscripts. The derived equation
simply says that the input of the first round of decryption is the output of the last
round of encryption because final and initial permutations cancel each other out. We
will now show that the first decryption round reverses the last encryption round. For

71

this, we have to express the output values (L¢,R?) of the first decryption round 1

in terms of the input values of the last encryption round (L;s,R;s) . The first one is

easy:

L{=R{=Lis=Rs

We now look at how Rfll is computed:

R} = L{ @ f(R4.ki6) = Ri6 ® f(Lis,k16)
R = [Li5® f(R15,k16)] @ f(Ris5,k16)
R{ = Lis®[f(Ris5,ki16) © f(Ri5,k16)] = L15

The crucial step is shown in the last equation above: An identical output of the
f-function is XORed twice to L;s. These operations cancel each other out, so that
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R‘f = L;5. Hence, after the first decryption round, we in fact have computed the same
values we had before the last encryption round. Thus, the first decryption round
reverses the last encryption round. This is an iterative process which continues in
the next 15 decryption rounds and that can be expressed as:

L{ = Rig_i,
R =Ly
where i =0, 1,...,16. In particular, after the last decryption round:

LY = Ris_16=Ro
d

Finally, at the end of the decryption process, we have to reverse the initial per-
mutation:
1P~ (R, L) = 1P~ (Lo, Ro) = IP~ 1 (IP(x)) = x

where x is the plaintext that was the input to the DES encryption.

3.5 Security of DES

As we discussed in Sect. 1.2.2, ciphers can be attacked in several ways. With respect
to cryptographic attacks, we distinguish between exhaustive key search or brute-
force attacks, and analytical attacks. The latter was demonstrated with the LFSR
attack in Sect. 2.3.2, where we could easily break a stream cipher by solving a
system of linear equations. Shortly after DES was proposed, two major criticisms
against the cryptographic strength of DES centered around two arguments:

1. The key space is too small, i.e., the algorithm is vulnerable against brute-force
attacks.

2. The design criteria of the S-boxes was kept secret and there might have existed an
analytical attack that exploits mathematical properties of the S-boxes, but which
is only known to the DES designers.

We discuss both types of attacks below. However, we also state the main con-
clusion about DES security already here: Despite very intensive cryptanalysis over
the lifetime of DES, current analytical attacks are not very efficient. However, DES
can relatively easily be broken with an exhaustive key-search attack and, thus, plain
DES is not suited for most applications any more.
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3.5.1 Exhaustive Key Search

The first criticism is nowadays certainly justified. The original cipher proposed by
IBM had a key length of 128 bits and it is suspicious that it was reduced to 56 bits.
The official statement that a cipher with a shorter key length made it easier to im-
plement the DES algorithm on a single chip in 1974 does not sound too convincing.
For clarification, let’s recall the principle of an exhaustive key search (or brute-force
attack):

Definition 3.5.1 DES Exhaustive key search

Input: at least one pair of plaintext—ciphertext (x,y)

Output: k, such that y = DESy(x)

Attack: Test all 2°° possible keys until the following condition is
fulfilled:

DES;Zl.l(y);x ,i=0,1,...,2%°—1.

Note that there is a small chance of 1/2!° that an incorrect key is found, i.e., a key
k which decrypts only the one ciphertext y correctly but not subsequent ciphertexts.
If one wants to rule out this possibility, an attacker must check such a key candidate
with a second plaintext—ciphertext pair. More about this is found in Sect. 5.2.

Regular computers are not particularly well suited to perform the 2¢ key tests
necessary, but special-purpose key-search machines are an option. It seems highly
likely that large (government) institutions have long been able to build such brute-
force crackers, which can break DES in a matter of days. In 1977, Whitfield Diffie
and Martin Hellman [59] estimated that it was possible to build an exhaustive key-
search machine for approximately $20,000,000. Even though they later stated that
their cost estimate had been too optimistic, it was clear from the beginning that a
cracker could be built with sufficient funding.

At the rump session of the CRYPTO 1993 conference, Michael Wiener proposed
the design of a very efficient key-search machine which used pipelining techniques.
An update of his proposal can be found in [174]. He estimated the cost of his de-
sign at approximately $1,000,000, and the time required to find the key at 1.5 days.
This was a proposal only, and the machine was not built. In 1998, however, the EFF
(Electronic Frontier Foundation) built the hardware machine Deep Crack, which
performed a brute-force attack against DES in 56 hours. Figure 3.17 shows a photo
of Deep Crack. The machine consisted of 1800 integrated circuits, where each had
24 key-test units. The average search time of Deep Crack was 15 days, and the ma-
chine was built for less than $250,000. The successful break with Deep Crack was
considered the official demonstration that DES is no longer secure against deter-
mined attacks by many people. Please note that this break does not imply that a
weak algorithm had been in use for more than 20 years. It was only possible to build
Deep Crack at such a relatively low price because digital hardware had become
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cheap. In the 1980s it would have been impossible to build a DES cracker with-
out spending many millions of dollars. It can be speculated that only government
agencies were willing to spend such an amount of money for code breaking.

Fig. 3.17 Deep Crack — the hardware exhaustive key-search machine that broke DES in 1998
(reproduced with permission from Paul Kocher)

DES brute-force attacks also provide an excellent case study for the continuing
decrease in hardware costs. In 2006, the COPACOBANA (Cost-Optimized Parallel
Code-Breaker) machine was built based on commercial integrated circuits by a team
of researchers from the Universities of Bochum and Kiel in Germany (the authors of
this book were heavily involved in this effort). COPACOBANA allows one to break
DES with an average search time of less than 7 days. The interesting part of this
undertaking is that the machine could be built with hardware costs in the $10,000
range. Figure 3.18 shows a picture of COPACOBANA.

Fig. 3.18 COPACOBANA — A cost-optimized parallel code breaker

In summary, a key size of 56 bits is too short to encrypt confidential data nowa-
days. Hence, single DES should only be used for applications where only short-term
security is needed — say, a few hours — or where the value of the encrypted data is
very low. However, variants of DES, in particular 3DES, are still secure.
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3.5.2 Analytical Attacks

As was shown in the first chapter, analytical attacks can be very powerful. Since
the introduction of DES in the mid-1970s, many excellent researchers in academia
(and without doubt many excellent researchers in intelligence agencies) tried to find
weaknesses in the structure of DES which allowed them to break the cipher. It is
a major triumph for the designers of DES that no weakness was found until 1990.
In this year, Eli Biham and Adi Shamir discovered what is called differential crypt-
analysis (DC). This is a powerful attack which is in principle applicable to any block
cipher. However, it turned out that the DES S-boxes are particularly resistant against
this attack. In fact, one member of the original IBM design team declared after the
discovery of DC that they had been aware of the attack at the time of design. Al-
legedly, the reason why the S-box design criteria were not made public was that the
design team did not want to make such a powerful attack public. If this claim is true
— and all circumstances support it — it means that the IBM and NSA team was
15 years ahead of the research community. It should be noted, however, that in the
1970s and 1980s relatively few people did active research in cryptography.

In 1993 a related but distinct analytical attack was published by Mitsuru Matsui,
which was named linear cryptanalysis (LC). Similar to differential cryptanalysis,
the effectiveness of this attack also heavily depends on the structure of the S-boxes.

What is the practical relevance of these two analytical attacks against DES? It
turns out that an attacker needs 24’ plaintext—ciphertext pairs for a successful DC
attack. This assumes particularly chosen plaintext blocks; for random plaintext 2
pairs are needed! In the case of LC, an attacker needs 2*3 plaintext—ciphertext pairs.
All these numbers seem highly impractical for several reasons. First, an attacker
needs to know an extremely large number of plaintexts, i.e., pieces of data which
are supposedly encrypted and thus hidden from the attacker. Second, collecting and
storing such an amount of data takes a long time and requires considerable memory
resources. Third, the attack only recovers one key. (This is actually one of many
arguments for introducing key freshness in cryptographic applications.) As a result
of all these arguments, it does not seem likely that DES can be broken with either
DC or LC in real-world systems. However, both DC and LC are very powerful
attacks which are applicable to many other block ciphers. Table 3.13 provides an
overview of proposed and realized attacks against DES over the last three decades.
Some entries refer to what is known as the DES Challenges. Starting in 1997, several
DES-breaking challenges were organized by the company RSA Security.

3.6 Implementation in Software and Hardware

In the following, we provide a brief assessment of DES implementation properties in
software and hardware. When we talk about software, we refer to DES implemen-
tations running on desktop CPUs or embedded microprocessors like smart cards



76 3 The Data Encryption Standard (DES) and Alternatives

Table 3.13 History of full-round DES attacks

Date |Proposed or implemented attacks
1977 | W. Diffie and M. Hellman propose cost estimate for key-search machine
1990 |E. Biham and A. Shamir propose differential cryptanalysis, which requires
chosen plaintexts
1993  |M. Wiener proposes detailed hardware design for key-search machine with an
average search time of 36 h and estimated cost of $1,000,000

1993  |M. Matsui proposes linear cryptanalysis, which requires 24 chosen ciphertexts
Jun. 1997 |DES Challenge I broken through brute-force; distributed effort on the Internet
took 4.5 months
Feb. 1998 |DES Challenge 1I-1 broken through brute-force; distributed effort on the Inter-
net took 39 days
Jul. 1998 |DES Challenge I1I-2 broken through brute-force; Electronic Frontier Founda-
tion built the Deep Crack key-search machine for about $250,000. The attack
took 56 h (15 days average)
Jan. 1999 |DES Challenge III broken through brute-force by distributed Internet effort
combined with Deep Crack and a total search time of 22 hours
Apr. 2006 |Universities of Bochum and Kiel built COPACOBANA key-search machine
based on low-cost FPGAs for approximately $10,000. Average search time is
7 days

247

or cell phones. Hardware refers to DES implementations running on ICs such as
application-specific integrated circuits (ASICs) or field programmable gate arrays
(FPGAS).

Software

A straightforward software implementation which follows the data flow of most
DES descriptions, such as the one presented in this chapter, results in a very poor
performance. This is due to the fact that many of the atomic DES operations involve
bit permutation, in particular the £ and P permutation, which are slow in software.
Similarly, small S-boxes such as used in DES are efficient in hardware but only mod-
erately efficient on modern CPUs. There have been numerous methods proposed for
accelerating DES software implementations. The general idea is to use tables with
precomputed values of several DES operations, e.g., of several S-boxes and the per-
mutation. Optimized implementations require about 240 cycles for encrypting one
block on a 32-bit CPU. On a 2-GHz CPU this translates into a theoretical throughput
of about 533 Mbits/s. 3DES, which is considerably more secure than single DES,
runs at almost exactly 1/3 of the DES speed. Note that nonoptimized implementa-
tions are considerably slower, often below 100 Mbit/s.

A notable method for accelerating software implementations of DES is bit-
slicing, developed by Eli Biham [20]. On a 300-MHz DEC Alpha workstation an
encryption rate of 137 Mbit/sec has been reported, which was much faster than a
standard DES implementation at that time. The limitation of bit-slicing, however, is
that several blocks are encrypted in parallel, which can be a drawback for certain
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modes of operation such as Cipher Block Chaining (CBC) and Output Feedback
(OFB) mode (cf. Chap. 5).

Hardware

One design criterion for DES was its efficiency in hardware. Permutations such as
the E, P, IP and IP~! permutations are very easy to implement in hardware, as
they only require wiring but no logic. The small 6-by-4 S-boxes are also relatively
easily realizable in hardware. Typically, they are implemented with Boolean logic,
i.e., logic gates. On average, one S-box requires about 100 gates.

An area-efficient implementation of a single DES round can be done with less
than 3000 gates. If a high throughput is desired, DES can be implemented extremely
fast by fitting multiple rounds in one circuit, e.g., by using pipelining. On modern
ASICs and FPGAs throughput rates of several 100 Gbit/sec are possible. On the
other end of the performance spectrum, very small implementations with fewer than
3000 gates even fit onto lowcost radio frequency identification (RFID) chips.

3.7 DES Alternatives

There exist a wealth of other block ciphers. Even though there are many ciphers
which have security weaknesses or which are not well investigated, there are also
many block ciphers which appear very strong. In the following a brief list of ciphers
is given which can be of interest depending on the application needs.

3.7.1 The Advanced Encryption Standard (AES) and the AES
Finalist Ciphers

By now, the algorithm of choice for many, many applications has become the Ad-
vanced Encryption Standard (AES), which will be introduced in detail in the follow-
ing chapter. AES is with its three key lengths of 128, 192 and 256 bit secure against
brute-force attacks for several decades, and there are no analytical attacks with any
reasonable chance of success known.

AES was the result of an open competition, and in the last stage of the selection
process there were four other finalist algorithms. These are the block ciphers Mars,
RC6, Serpent and Twofish. All of them are cryptographically strong and quite fast,
especially in software. Based on today’s knowledge, they can all be recommended.
Mars, Serpent and Twofish can be used royalty-free.
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3.7.2 Triple DES (3DES) and DESX

An alternative to AES or the AES finalist algorithms is triple DES, often denoted as
3DES. 3DES consists of three subsequent DES encryptions

y = DES, (DES, (DESy, (x)))
with different keys, as shown in Fig. 3.19.

x '+ DES DES DES |— y

S

Fig. 3.19 Triple DES (3DES)

3DES seems resistant to both brute-force attacks and any analytical attack imag-
inable at the moment. See Chap. 5 for more information on double and triple en-
cryption. Another version of 3DES is

y = DES,(DES. (DES}, (x))).

The advantage here is that 3DES performs single DES encryption if k3 = k, = &y,
which is sometimes desired in implementations that should also support single DES
for legacy reasons. 3DES is very efficient in hardware but not particularly in soft-
ware. It is popular in financial applications as well as for protecting biometric infor-
mation in electronic passports.

A different approach for strengthening DES is to use key whitening. For this, two
additional 64-bit keys kj and k, are XORed to the plaintext and ciphertext, respec-
tively, prior to and after the DES algorithm. This yields the following encryption
scheme:

Y = DESyy, k,(x) = DESi(x & k1) © ka

This surprisingly simple modification makes DES much more resistant against ex-
haustive key searches. More about key whitening is said in Sect. 5.3.3.

3.7.3 Lightweight Cipher PRESENT

Over the last few years, several new block algorithms which are classified as
“lightweight ciphers” have been proposed. Lightweight commonly refers to algo-
rithms with a very low implementation complexity, especially in hardware. Trivium
(Sect. 2.3.3) is an example of a lightweight stream cipher. A promising block cipher
candidate is PRESENT, which was designed specifically for applications such as
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RFID tags or other pervasive computing applications that are extremely power or
cost constrained. (One of the book authors participated in the design of PRESENT.)

plaintext key register

4 K1
Y Y
sBoxLi
generateRoundKeys() S OE yer update
fori=11031 do pLayer
addRoundKey(STATE,K;) *
sBoxLayer(STATE)
pLayer(STATE) * *
egngﬂr dKey(STATE,K sBoxLayer dat
addRoundKey( ,K32) pLayer update
' K32 ‘
Y
ciphertext

Fig. 3.20 Internal structure and pseudocode of the block cipher PRESENT

Unlike DES, PRESENT is not based on a Feistel network. Instead it is a
substitution-permutation network (SP-network) and consists of 31 rounds. The
block length is 64 bits, and two key lengths of 80 and 128 bits are supported.
Each of the 31 rounds consists of an XOR operation to introduce a round key K;
for 1 <i < 32, where K3, is used after round 31, a nonlinear substitution layer
(sBoxLayer) and a linear bitwise permutation (pLayer). The nonlinear layer uses a
single 4-bit S-box S, which is applied 16 times in parallel in each round. The key
schedule generates 32 round keys from the user supplied key. The encryption rou-
tine of the cipher is described in pseudocode in Fig. 3.20, and each stage is now
specified in turn.

addRoundKey At the beginning of each round, the round key K; is XORed to the
current STATE.

sBoxlayer PRESENT uses a single 4-bit to 4-bit S-box. This is a direct conse-
quence of the pursuit of hardware efficiency, since such an S-Box allows a much
more compact implementation than, e.g., an 8-bit S-box. The S-box entries in hex-
adecimal notation are given in Table 3.14.

Table 3.14 The PRESENT S-box in hexadecimal notation
x [|0|1|2|3(4(5|6|7|8|9|A|B|C|D|E|F
Slx][[c|5|6|B|9|0|A|D|3|E|F|8[4|7|1]2

The 64 bit data path bgj3 . .. by is referred to as state. For the sBoxLayer the cur-
rent state is considered as sixteen 4-bit words wys ... wo, where w; = b4y 3||basit2||
basit1]|basi for 0 <i < 15, and the output are the 16 words S[w;].
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pLayer Just like DES, the mixing layer was chosen as a bit permutation, which
can be implemented extremely compactly in hardware. The bit permutation used in
PRESENT is given by Table 3.15. Bit i of STATE is moved to bit position P(i).

Table 3.15 The permutation layer of PRESENT
i |01 |2(3]|4(5]|6|7[8|9]|10|11[12|13|14]|15

P(i)|| 0 |16(32 (48| 1 |17|33]|49| 2 |18|34(50| 3 |19|35]51

1617 18[19|20(21|22{23|24(25|26|27|28|29|30|31
i)[| 4120(36(52| 5 |21|37|53| 6 |22|38|54| 7 |23|39|55

i
(
i
(
i [[32(33(34(35|36|37|38(39|40(41|42|43|44 (45|46 |47
(
i
(

v

~

i)[| 8 124|40(56| 9 |25|41|57|10(26|42|58 1127|4359

48149 (50(51(52(53|54|55|56|57|58|59|60|61|62|63
i)[[12(28(44|60(13[29(45|61|14[30(|46|62|15|31|47|63

P

The bit permutation is quite regular and can in fact be expressed in the following
way:
~_ Ji-16 mod63,ie€{0,...,62}
P(’)_{63, i =63.

Key Schedule We describe in the following the key schedule for PRESENT with
an 80-bit key. Since the main applications of PRESENT are low-cost systems, this
key length is in most cases appropriate. (Details of the key schedule for PRESENT-
128 can be found in [29].) The user-supplied key is stored in a key register K and
is represented as k79k7g ... ko. At round i the 64-bit round key K; = Kg3K62 - - - Ko
consists of the 64 leftmost bits of the current contents of register K. Thus at round i
we have:
Ki = Ke3Ke2 - . . Ko = k79k73 .. . k16

The first subkey K is a direct copy of 64 bit of the user supplied key. For the fol-
lowing subkeys Kj, ..., K3, the key register K = k79k7s ... ko is updated as follows:

1. [k79k78 .. klkO] = [k18k17 ce kgoklg]

2. [kyokrgkrrkys] = S[krokrgkrrkye]
3. [k19k18k17k16k15] = [k19k18k17k16k15] @ round_counter

Thus, the key schedule consists of three operations: (1) the key register is ro-
tated by 61 bit positions to the left, (2) the leftmost four bits are passed through
the PRESENT S-box, and (3) the round_counter value i is XORed with bits
kiokigkirkigkss of K, where the least significant bit of round_counter is on
the right. This counter is a simple integer which takes the values (00001,00010, ...
,11111). Note that for the derivation of K the counter value 00001 is used; for K3,
the counter value 00010; and so on.

Implementation As a result of the aggressively hardware-optimized design of
PRESENT, its software performance is not very competitive relative to modern ci-
phers like AES. An optimized software implementation on a Pentium III CPU in
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C achieves a throughput of about 60 Mbit/s at a frequency of 1 GHz. However, it
performs quite well on small microprocessors, which are common in inexpensive
consumer products.

PRESENT-80 can be implemented in hardware with area requirements of ap-
proximately 1600 gate equivalences [147], where the encryption of one 64-bit plain-
text block requires 32 clock cycles. As an example, at a clock rate of 1 MHz, which
is quite typical on low-cost devices, a throughput of 2 Mbit/s is achieved, which is
sufficient for most such applications. It is possible to realize the cipher with as few
as approximately 1000 gate equivalences, where the encryption of one 64-bit plain-
text requires 547 clock cycles. A fully pipelined implementation of PRESENT with
31 encryption stages achieves a throughput of 64 bit per clock cycle, which can be
tranlsated into encryption throughputs of more than 50 Gbit/s.

Even though no attacks against PRESENT are known at the time of writing, it
should be noted that it is a relatively new block cipher.

3.8 Discussion and Further Reading

DES History and Attacks Even though plain DES (i.e., non-3DES) is today
mainly used in legacy applications, its history helps us understand the evolution
of cryptography since the mid-1970s from an obscure discipline almost solely stud-
ied in government organizations towards an open discipline with many players in
industry and academia. A summary of the DES history can be found in [165]. The
two main analytical attacks developed against DES, differential and linear crypt-
analysis, are today among the most powerful general methods for breaking block
ciphers. Readers interested in the theory of block ciphers are encouraged to study
these attacks. Good descriptions are given in [21, 114].

As we have seen in this chapter, DES should no longer be used since a brute-force
attack can be accomplished at low cost in little time with cryptanalytical hardware.
The two machines built outside governments, Deep Crack and COPACOBANA, are
instructive examples of how to build low-cost “supercomputers” for very narrowly
defined computational tasks. More information about Deep Crack can be found on
the Internet [78] and about COPACOBANA in the articles [105, 88] and online
at [47]. Readers interested in the fascinating area of cryptanalytical computers in
general should take a look at the SHARCS (Special-purpose Hardware for Attacking
Cryptographic Systems) workshop series, which started in 2005 and has information
online [170].

DES Alternatives It should be noted that hundreds of block ciphers have been
proposed over the last three decades, especially in the late 1980s and in the 1990s.
DES has influenced the design of many other encryption algorithms. It is probably
fair to say that the majority of today’s successful block ciphers have borrowed ideas
from DES. Some of the popular block ciphers are also based on Feistel networks
as is DES. Examples of Feistel ciphers include Blowfish, CAST, KASUMI, Mars,
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MISTY1, Twofish and RC6. One cipher which is well known and markedly different
from DES is IDEA; it uses arithmetic in three different algebraic structures as atomic
operations.

DES is a good example of a block cipher which is very efficient in hardware. The
recent advent of pervasive computing has created a need for extremely small ciphers
for applications such as RFID tags or low-cost smart cards, e.g., for high-volume
public transportation payment tickets. Good references for PRESENT are [29, 147].
In addition to PRESENT, other recently proposed very small block ciphers include
Clefia [48], HIGHT [93] and mCrypton [111]. A good overview of the new field of
lightweight cryptography is given in the surveys [71, 98]. A more in-depth treatment
of lightweight algorithms can be found in the Ph.D. dissertation [135].

Implementation With respect to software implementation of DES, an early refer-
ence is [20]. More advanced techniques are described in [106]. The powerful method
of bit-slicing is applicable not only to DES but to most other ciphers.

Regarding DES hardware implementation, an early but still very interesting ref-
erence is [169]. There are many descriptions of high-performance implementations
of DES on a variety of hardware platforms, including FPGAs [163], standard ASICs
as well as more exotic semiconductor technology [67].

3.9 Lessons Learned

m DES was the dominant symmetric encryption algorithm from the mid-1970s to
the mid-1990s. Since 56-bit keys are no longer secure, the Advanced Encryption
Standard (AES) was created.

m Standard DES with 56-bit key length can be broken relatively easily nowadays
through an exhaustive key search.

m DES is quite robust against known analytical attacks: In practice it is very diffi-
cult to break the cipher with differential or linear cryptanalysis.

m DES is reasonably efficient in software and very fast and small in hardware.

m By encrypting with DES three times in a row, triple DES (3DES) is created,
against which no practical attack is currently known.

m The “default” symmetric cipher is nowadays often AES. In addition, the other
four AES finalist ciphers all seem very secure and efficient.

m Since about 2005 several proposals for lightweight ciphers have been made. They
are suited for resource-constrained applications.
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Problems

3.1. As stated in Sect. 3.5.2, one important property which makes DES secure is that
the S-boxes are nonlinear. In this problem we verify this property by computing the
output of S; for several pairs of inputs.

Show that Sy (x1) ®S1(x2) # S1(x1 D x2), where “@” denotes bitwise XOR, for:

1. x; = 000000, x, = 000001
2. x1 = 111111, x, = 100000
3. x1 = 101010, x, = 010101

3.2. We want to verify that /P(-) and IP~!(-) are truly inverse operations. We con-
sider a vector x = (x1,X2,. .., Xe4) Of 64 bit. Show that IP~!(IP(x)) = x for the first
five bits of x, i.e. for x;, i = 1,2,3,4,5.

3.3. What is the output of the first round of the DES algorithm when the plaintext
and the key are both all zeros?

3.4. What is the output of the first round of the DES algorithm when the plaintext
and the key are both all ones?

3.5. Remember that it is desirable for good block ciphers that a change in one input
bit affects many output bits, a property that is called diffusion or the avalanche
effect. We try now to get a feeling for the avalanche property of DES. We apply an
input word that has a “1” at bit position 57 and all other bits as well as the key are
zero. (Note that the input word has to run through the initial permutation.)

1. How many S-boxes get different inputs compared to the case when an all-zero
plaintext is provided?

2. What is the minimum number of output bits of the S-boxes that will change

according to the S-box design criteria?

. What is the output after the first round?

4. How many output bit after the first round have actually changed compared to
the case when the plaintext is all zero? (Observe that we only consider a single
round here. There will be more and more output differences after every new
round. Hence the term avalanche effect.)

W

3.6. An avalanche effect is also desirable for the key: A one-bit change in a key
should result in a dramatically different ciphertext if the plaintext is unchanged.

1. Assume an encryption with a given key. Now assume the key bit at position 1
(prior to PC — 1) is being flipped. Which S-boxes in which rounds are affected
by the bit flip during DES encryption?

2. Which S-boxes in which DES rounds are affected by this bit flip during DES
decryption?

3.7. A DES key K,, is called a weak key if encryption and decryption are identical
operations:
DESk,, (x) = DESg! (x), for all x (3.1)
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1. Describe the relationship of the subkeys in the encryption and decryption algo-
rithm that is required so that Eq. (3.1) is fulfilled.

2. There are four weak DES keys. What are they?

3. What is the likelihood that a randomly selected key is weak?

3.8. DES has a somewhat surprising property related to bitwise complements of its
inputs and outputs. We investigate the property in this problem.

We denote the bitwise complement of a number A (that is, all bits are flipped) by
A’. Let @ denote bitwise XOR. We want to show that if

y = DES;(x)

then
y' =DESy (x). (3.2)

This states that if we complement the plaintext and the key, then the ciphertext
output will also be the complement of the original ciphertext. Your task is to prove
this property.

Try to prove this property using the following steps:

1. Show that for any bit strings A, B of equal length,
A'eB =A®B

and
A'®B=(A®B).

(These two operations are needed for some of the following steps.)

2. Show that PC — 1(k') = (PC —1(k))’.

3. Show that LS,‘(CL]) = (LS,‘(C,'_l))/.

4. Using the two results from above, show that if k; are the keys generated from &,
then k; are the keys generated from &, where i = 1,2,..., 16.

5. Show that IP(x') = (IP(x))’.

6. Show that E(R}) = (E(R;))’.

7. Using all previous results, show that if R;_1,L;_,k; generate R;, thenR,_| L] k!
generate R;.

8. Show that Eq. (3.2) is true.

3.9. Assume we perform a known-plaintext attack against DES with one pair of
plaintext and ciphertext. How many keys do we have to test in a worst-case sce-
nario if we apply an exhaustive key search in a straightforward way? How many on
average?

3.10. In this problem we want to study the clock frequency requirements for a hard-
ware implementation of DES in real-world applications. The speed of a DES im-
plementation is mainly determined by the time required to do one core iteration.
This hardware kernel is then used 16 consecutive times in order to generate the en-
crypted output. (An alternative approach would be to build a hardware pipeline with
16 stages, resulting in 16-fold increased hardware costs.)
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1. Let’s assume that one core iteration can be performed in one clock cycle. De-
velop an expression for the required clock frequency for encrypting a stream of
data with a data rate r [bit/sec]. Ignore the time needed for the initial and final
permutation.

2. What clock frequency is required for encrypting a fast network link running at a
speed of 1 Gb/sec? What is the clock frequency if we want to support a speed of
8 Gb/sec?

3.11. As the example of COPACOBANA [105] shows, key-search machines need
not be prohibitive from a monetary point of view. We now consider a simple brute-
force attack on DES which runs on COPACOBANA.

1. Compute the runtime of an average exhaustive key-search on DES assuming the
following implementational details:

COPACOBANA platform with 20 FPGA modules

6 FPGAs per FPGA module

4 DES engines per FPGA

Each DES engine is fully pipelined and is capable of performing one encryp-
tion per clock cycle

m 100 MHz clock frequency

2. How many COPACOBANA machines do we need in the case of an average
search time of one hour?

3. Why does any design of a key-search machine constitute only an upper security
threshold? By upper security threshold we mean a (complexity) measure which
describes the maximum security that is provided by a given cryptographic algo-
rithm.

3.12. We study a real-world case in this problem. A commercial file encryption
program from the early 1990s used standard DES with 56 key bits. In those days,
performing an exhaustive key search was considerably harder than nowadays, and
thus the key length was sufficient for some applications. Unfortunately, the imple-
mentation of the key generation was flawed, which we are going to analyze. Assume
that we can test 10° keys per second on a conventional PC.

The key is generated from a password consisting of 8 characters. The key is a
simple concatenation of the 8 ASCII characters, yielding 64 = 8§ - 8 key bits. With
the permutation PC — 1 in the key schedule, the least significant bit (LSB) of each
8-bit character is ignored, yielding 56 key bits.

1. What is the size of the key space if all 8 characters are randomly chosen 8-bit
ASCII characters? How long does an average key search take with a single PC?

2. How many key bits are used, if the 8 characters are randomly chosen 7-bit ASCII
characters (i.e., the most significant bit is always zero)? How long does an aver-
age key search take with a single PC?

3. How large is the key space if, in addition to the restriction in Part 2, only let-
ters are used as characters. Furthermore, unfortunately, all letters are converted



86 3 The Data Encryption Standard (DES) and Alternatives

to capital letters before generating the key in the software. How long does an
average key search take with a single PC?

3.13. This problem deals with the lightweight cipher PRESENT.

1. Calculate the state of PRESENT-80 after the execution of one round. You can use
the following table to solve this problem with paper and pencil. Use the following
values (in hexadecimal notation):
plaintext = 0000 0000 0000 0000,
key =BBBB 5555 5555 EEEE FFFF.

|Plaintext [0000 0000 0000 0000
Round key

State after KeyAdd
State after S-Layer
State after P-Layer

2. Now calculate the round key for the second round using the following table.

[Key |BBBB 5555 5555 EEEE FFFF|

Key state after rotation
Key state after S-box

Key state after CounterAdd
Round key for Round 2




Chapter 4
The Advanced Encryption Standard (AES)

The Advanced Encryption Standard (AES) is the most widely used symmetric cipher
today. Even though the term “Standard” in its name only refers to US government
applications, the AES block cipher is also mandatory in several industry standards
and is used in many commercial systems. Among the commercial standards that
include AES are the Internet security standard IPsec, TLS, the Wi-Fi encryption
standard IEEE 802.111i, the secure shell network protocol SSH (Secure Shell), the
Internet phone Skype and numerous security products around the world. To date,
there are no attacks better than brute-force known against AES.
In this chapter you will learn:

m The design process of the US symmetric encryption standard, AES
The encryption and decryption function of AES
m The internal structure of AES, namely:
U] byte substitution layer
] diffusion layer
U] key addition layer
[ key schedule
m Basic facts about Galois fields
m Efficiency of AES implementations

C. Paar, J. Pelzl, Understanding Cryptography, 87
DOI 10.1007/978-3-642-04101-3_4, (©) Springer-Verlag Berlin Heidelberg 2010
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4.1 Introduction

In 1999 the US National Institute of Standards and Technology (NIST) indicated
that DES should only be used for legacy systems and instead triple DES (3DES)
should be used. Even though 3DES resists brute-force attacks with today’s technol-
ogy, there are several problems with it. First, it is not very efficient with regard to
software implementations. DES is already not particularly well suited for software
and 3DES is three times slower than DES. Another disadvantage is the relatively
short block size of 64 bits, which is a drawback in certain applications, e.g., if one
wants to built a hash function from a block cipher (cf. Sect. 11.3.2). Finally, if one
is worried about attacks with quantum computers, which might become reality in a
few decades, key lengths on the order of 256 bits are desirable. All these consider-
ation led NIST to the conclusion that an entirely new block cipher was needed as a
replacement for DES.

In 1997 NIST called for proposals for a new Advanced Encryption Standard
(AES). Unlike the DES development, the selection of the algorithm for AES was
an open process administered by NIST. In three subsequent AES evaluation rounds,
NIST and the international scientific community discussed the advantages and dis-
advantages of the submitted ciphers and narrowed down the number of potential
candidates. In 2001, NIST declared the block cipher Rijndael as the new AES and
published it as a final standard (FIPS PUB 197). Rijndael was designed by two
young Belgian cryptographers.

Within the call for proposals, the following requirements for all AES candidate
submissions were mandatory:

block cipher with 128 bit block size

three key lengths must be supported: 128, 192 and 256 bit
security relative to other submitted algorithms

efficiency in software and hardware

The invitation for submitting suitable algorithms and the subsequent evaluation
of the successor of DES was a public process. A compact chronology of the AES
selection process is given here:

m The need for a new block cipher was announced on January 2, 1997, by NIST.

m A formal call for AES was announced on September 12, 1997.

m Fifteen candidate algorithms were submitted by researchers from several coun-
tries by August 20, 1998.

m On August 9, 1999, five finalist algorithms were announced:

Mars by IBM Corporation

RC6 by RSA Laboratories

Rijndael, by Joan Daemen and Vincent Rijmen

Serpent, by Ross Anderson, Eli Biham and Lars Knudsen

Twofish, by Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris
Hall and Niels Ferguson

Oo0oooao



4.2 Overview of the AES Algorithm 89

m On October 2, 2000, NIST announced that it had chosen Rijndael as the AES.
m On November 26, 2001, AES was formally approved as a US federal standard.

It is expected that AES will be the dominant symmetric-key algorithm for many
commercial applications for the next few decades. It is also remarkable that in 2003
the US National Security Agency (NSA) announced that it allows AES to encrypt
classified documents up to the level SECRET for all key lengths, and up to the TOP
SECRET level for key lengths of either 192 or 256 bits. Prior to that date, only
non-public algorithms had been used for the encryption of classified documents.

4.2 Overview of the AES Algorithm

The AES cipher is almost identical to the block cipher Rijndael. The Rijndael block
and key size vary between 128, 192 and 256 bits. However, the AES standard only
calls for a block size of 128 bits. Hence, only Rijndael with a block length of 128
bits is known as the AES algorithm. In the remainder of this chapter, we only discuss
the standard version of Rijndael with a block length of 128 bits.

X
/‘F 128
128/192/256

AES ~——F— &k

/l/ 128

y
Fig. 4.1 AES input/output parameters

As mentioned previously, three key lengths must be supported by Rijndael as this
was an NIST design requirement. The number of internal rounds of the cipher is a
function of the key length according to Table 4.1.

Table 4.1 Key lengths and number of rounds for AES
key lengths |# rounds = n,

128 bit 10
192 bit 12
256 bit 14

In contrast to DES, AES does not have a Feistel structure. Feistel networks do
not encrypt an entire block per iteration, e.g., in DES, 64 /2 = 32 bits are encrypted
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in one round. AES, on the other hand, encrypts all 128 bits in one iteration. This is
one reason why it has a comparably small number of rounds.

AES consists of so-called layers. Each layer manipulates all 128 bits of the data
path. The data path is also referred to as the state of the algorithm. There are only
three different types of layers. Each round, with the exception of the first, consists
of all three layers as shown in Fig. 4.2: the plaintext is denoted as x, the ciphertext
as y and the number of rounds as n,. Moreover, the last round », does not make
use of the MixColumn transformation, which makes the encryption and decryption
scheme symmetric.

‘We continue with a brief description of the layers:

Key Addition layer A 128-bit round key, or subkey, which has been derived from
the main key in the key schedule, is XORed to the state.

Byte Substitution layer (S-Box) Each element of the state is nonlinearly trans-
formed using lookup tables with special mathematical properties. This introduces
confusion to the data, i.e., it assures that changes in individual state bits propagate
quickly across the data path.

Diffusion layer It provides diffusion over all state bits. It consists of two sublayers,
both of which perform linear operations:

m The ShiftRows layer permutes the data on a byte level.
m The MixColumn layer is a matrix operation which combines (mixes) blocks of
four bytes.

Similar to DES, the key schedule computes round keys, or subkeys, (ko, k1, ..., kn,)
from the original AES key.

Before we describe the internal functions of the layers in Sect. 4.4, we have to
introduce a new mathematical concept, namely Galois fields. Galois field computa-
tions are needed for all operations within the AES layers.

4.3 Some Mathematics: A Brief Introduction to Galois Fields

In AES, Galois field arithmetic is used in most layers, especially in the S-Box and
the MixColumn layer. Hence, for a deeper understanding of the internals of AES, we
provide an introduction to Galois fields as needed for this purpose before we con-
tinue with the algorithm in Sect. 4.4. A background on Galois fields is not required
for a basic understanding of AES, and the reader can skip this section.

4.3.1 Existence of Finite Fields

A finite field, sometimes also called Galois field, is a set with a finite number of
elements. Roughly speaking, a Galois field is a finite set of elements in which we
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Plaintext
X Key k

k, ——
‘ Key Addition Layer } ¢ Transform 0
‘ Byte Substitution Layer ‘
round 1 Diffusion Layer
| il T~
‘ Key Addition Layer | Transform 1
‘ Byte Substitution Layer ‘
round n,—1
Ko, —
‘ Key Addition Layer } i Transform n,—1
‘ Byte Substitution Layer ‘
last round n, ‘ ShiftRows Layer ‘
¢ o
‘ Key Addition Layer } Transform n,

Ciphertext
y=AES(x)

Fig. 4.2 AES encryption block diagram

can add, subtract, multiply and invert. Before we introduce the definition of a field,
we first need the concept of a a simpler algebraic structure, a group.
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Definition 4.3.1 Group
A group is a set of elements G together with an operation o which
combines two elements of G. A group has the following properties:

1. The group operation o is closed. That is, for all a,b, € G, it holds
thataob=c € G.

2. The group operation is associative. That is, ac (boc) = (aob)oc
forall a,b,c € G.

3. There is an element 1 € G, called the neutral element (or identity
element), such thataol =1loa=ajforall a € G.

4. For each a € G there exists an element a~' € G, called the in-
verse of a, such thataoca ' =a loa=1.

5. A group G is abelian (or commutative) if, furthermore, aob =
boaforalla,b e G.

Roughly speaking, a group is set with one operation and the corresponding in-
verse operation. If the operation is called addition, the inverse operation is subtrac-
tion; if the operation is multiplication, the inverse operation is division (or multipli-
cation with the inverse element).

Example 4.1. The set of integers Z,, = {0,1,...,m — 1} and the operation addition
modulo m form a group with the neutral element 0. Every element a has an inverse
—a such that a + (—a) = 0 mod m. Note that this set does not form a group with the
operation multiplication because most elements a do not have an inverse such that
aa~' =1 mod m.

o

In order to have all four basic arithmetic operations (i.e., addition, subtraction,
multiplication, division) in one structure, we need a set which contains an additive
and a multiplicative group. This is what we call a field.

Definition 4.3.2 Field
A field F is a set of elements with the following properties:

m All elements of F form an additive group with the group opera-
tion “+” and the neutral element 0.

m All elements of F except O form a multiplicative group with the
group operation “x” and the neutral element 1.

m When the two group operations are mixed, the distributivity law
holds, i.e., for all a,b,c € F: a(b+c) = (ab) + (ac).

Example 4.2. The set R of real numbers is a field with the neutral element O for the
additive group and the neutral element 1 for the multiplicative group. Every real
number a has an additive inverse, namely —a, and every nonzero element a has a
multiplicative inverse 1/a.
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In cryptography, we are almost always interested in fields with a finite number of
elements, which we call finite fields or Galois fields. The number of elements in the
field is called the order or cardinality of the field. Of fundamental importance is the
following theorem:

Theorem 4.3.1 A field with order m only exists if m is a prime
power, i.e., m = p", for some positive integer n and prime integer
p. p is called the characteristic of the finite field.

This theorem implies that there are, for instance, finite fields with 11 elements,
or with 81 elements (since 81 = 3%) or with 256 elements (since 256 = 2%, and 2 is
a prime). However, there is no finite field with 12 elements since 12 = 22. 3, and
12 is thus not a prime power. In the remainder of this section we look at how finite
fields can be built, and more importantly for our purpose, how we can do arithmetic
in them.

4.3.2 Prime Fields

The most intuitive examples of finite fields are fields of prime order, i.e., fields with
n = 1. Elements of the field GF (p) can be represented by integers 0, 1,..., p— 1. The
two operations of the field are modular integer addition and integer multiplication
modulo p.

Theorem 4.3.2 Let p be a prime. The integer ring Z, is denoted
as GF(p) and is referred to as a prime field, or as a Galois field
with a prime number of elements. All nonzero elements of GF (p)
have an inverse. Arithmetic in GF (p) is done modulo p.

This means that if we consider the integer ring Z,, which was introduced in
Sect. 1.4.2, i.e., integers with modular addition and multiplication, and m happens
to be a prime, Z,, is not only a ring but also a finite field.

In order to do arithmetic in a prime field, we have to follow the rules for integer
rings: Addition and multiplication are done modulo p, the additive inverse of any
element a is given by a + (—a) = 0 mod p, and the multiplicative inverse of any
nonzero element a is defined as a-a~! = 1. Let’s have a look at an example of a
prime field.

Example 4.3. We consider the finite field GF (5) = {0,1,2,3,4}. The tables below
describe how to add and multiply any two elements, as well as the additive and
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addition additive inverse
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multiplicative inverse of the field elements. Using these tables, we can perform all
calculations in this field without using modular reduction explicitly.
o

A very important prime field is GF(2), which is the smallest finite field that
exists. Let’s have a look at the multiplication and addition tables for the field.

Example 4.4. Let’s consider the small finite field GF (2) = {0, 1}. Arithmetic is sim-
ply done modulo 2, yielding the following arithmetic tables:

addition multiplication
+(0 1 x [0 1
0(01 0l00
1110 1101

&

As we saw in Chap. 2 on stream ciphers, GF (2) addition, i.e., modulo 2 addition,
is equivalent to an XOR gate. What we learn from the example above is that GF'(2)
multiplication is equivalent to the logical AND gate. The field GF(2) is important
for AES.

4.3.3 Extension Fields GF (2™)

In AES the finite field contains 256 elements and is denoted as GF(2%). This field
was chosen because each of the field elements can be represented by one byte. For
the S-Box and MixColumn transforms, AES treats every byte of the internal data
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path as an element of the field GF(2%) and manipulates the data by performing
arithmetic in this finite field.

However, if the order of a finite field is not prime, and 28 is clearly not a prime,
the addition and multiplication operation cannot be represented by addition and mul-
tiplication of integers modulo 28. Such fields with m > 1 are called extension fields.
In order to deal with extension fields we need (1) a different notation for field ele-
ments and (2) different rules for performing arithmetic with the elements. We will
see in the following that elements of extension fields can be represented as poly-
nomials, and that computation in the extension field is achieved by performing a
certain type of polynomial arithmetic.

In extension fields GF (2™) elements are not represented as integers but as poly-
nomials with coefficients in GF(2). The polynomials have a maximum degree of
m— 1, so that there are m coefficients in total for every element. In the field GF (28),
which is used in AES, each element A € GF (28) is thus represented as:

A(x) =ax" +---+aix+ao, a; € GF(2)=1{0,1}.

Note that there are exactly 256 = 28 such polynomials. The set of these 256 polyno-
mials is the finite field GF(2%). It is also important to observe that every polynomial
can simply be stored in digital form as an 8-bit vector

A = (a7,a6,as,a4,a3,a2,a1,4ay).

In particular, we do not have to store the factors x7, x®, etc. Tt is clear from the bit

positions to which power x each coefficient belongs.

4.3.4 Addition and Subtraction in GF (2™)

Let’s now look at addition and subtraction in extension fields. The key addition layer
of AES uses addition. It turns out that these operations are straightforward. They are
simply achieved by performing standard polynomial addition and subtraction: We
merely add or subtract coefficients with equal powers of x. The coefficient additions
or subtractions are done in the underlying field GF(2).
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Definition 4.3.3 Extension field addition and subtraction
Let A(x),B(x) € GF(2™). The sum of the two elements is then com-
puted according to:

m—1
C(x) =A(x)+B(x)= Y, cix', ¢;=aj+b; mod?2
i=0

and the difference is computed according to:

m—1
C(x)=A(x)—B(x) = 2 cix', ¢i=a;—b; =a;+b; mod 2.
i=0

Note that we perform modulo 2 addition (or subtraction) with the coefficients. As
we saw in Chap. 2, addition and subtraction modulo 2 are the same operation. More-
over, addition modulo 2 is equal to bitwise XOR. Let’s have a look at an example in
the field GF (2%) which is used in AES:

Example 4.5. Here is how the sum C(x) = A(x) + B(x) of two elements from GF (28)
is computed:

A(x) = x74+ x84 x4 1

B(x) = 241

C(x) =x"+ x5+ x°

<

Note that if we computed the difference of the two polynomials A(x) — B(x) from
the example above, we would get the same result as for the sum.

4.3.5 Multiplication in GF (2™)

Multiplication in GF (28) is the core operation of the MixColumn transformation of
AES. In a first step, two elements (represented by their polynomials) of a finite field
GF(2™) are multiplied using the standard polynomial multiplication rule:

A(x)-B(x) = (am_1¥™ " 44 ag) - (bp1X™ '+ -+ bp)
C'(x) = c’2m72x2m72 + ),

where:

c6 = apbo mod 2
¢ = aoby +ayby mod 2

/
Com—2 = Am—1by—1 mod 2.
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Note that all coefficients a;, b; and ¢; are elements of GF(2), and that coeffi-
cient arithmetic is performed in GF(2). In general, the product polynomial C(x)
will have a degree higher than m — 1 and has to be reduced. The basic idea is an ap-
proach similar to the case of multiplication in prime fields: in GF (p), we multiply
the two integers, divide the result by a prime, and consider only the remainder. Here
is what we are doing in extension fields: The product of the multiplication is divided
by a certain polynomial, and we consider only the remainder after the polynomial
division. We need irreducible polynomials for the module reduction. We recall from
Sect. 2.3.1 that irreducible polynomials are roughly comparable to prime numbers,
i.e., their only factors are 1 and the polynomial itself.

Definition 4.3.4 Extension field multiplication
Let A(x),B(x) € GF(2™) and let

m
P(x)= pix', pi€GF(2)
i=0

be an irreducible polynomial. Multiplication of the two elements
A(x),B(x) is performed as

C(x) = A(x) - B(x) mod P(x).

Thus, every field GF(2™) requires an irreducible polynomial P(x) of degree m
with coefficients from GF(2). Note that not all polynomials are irreducible. For
example, the polynomial x* +x* +x + 1 is reducible since

AP+ 1= P Hx+ )2 +1)

and hence cannot be used to construct the extension field GF(2*). Since primitive
polynomials are a special type of irreducible polynomial, the polynomials in Ta-
ble 2.3 can be used for constructing fields GF(2™). For AES, the irreducible poly-
nomial

Px)=x+x*+x3 +x+1

is used. It is part of the AES specification.

Example 4.6. We want to multiply the two polynomials A(x) = x*> + x*> 4+ 1 and
B(x) = x* +x in the field GF (2*). The irreducible polynomial of this Galois field is
given as

P(x) =x*+x+1.

The plain polynomial product is computed as:
C'(x)=A(x)-B(x) =X+ x>+ x> +x.

We can now reduce C'(x) using the polynomial division method we learned in
school. However, sometimes it is easier to reduce each of the leading terms x* and
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x° individually:

X =1-P(x)+ (x+1)
x* = x4 1 mod P(x)
x = x> +x mod P(x).

Now, we only have to insert the reduced expression for x° into the intermediate
result C'(x):

C(x) = x° +x° + x> 4+ x mod P(x)
Clx)= (P +x)+ (P +x2+x) =2

It is important not to confuse multiplication in GF (2™) with integer multiplica-
tion, especially if we are concerned with software implementations of Galois fields.
Recall that the polynomials, i.e., the field elements, are normally stored as bit vec-
tors in the computers. If we look at the multiplication from the previous example,
the following very atypical operation is being performed on the bit level:

A - B = C
B+2+1) - P +x) =
(1101) -(0110)=(1000).

This computation is not identical to integer arithmetic. If the polynomials are in-
terpreted as integers, i.e., (1101), = 1310 and (0110), = 6,9, the result would have
been (1001110), = 7819, which is clearly not the same as the Galois field multipli-
cation product. Hence, even though we can represent field elements as integers data
types, we cannot make use of the integer arithmetic provided

4.3.6 Inversion in GF (2™)

Inversion in GF(28) is the core operation of the Byte Substitution transformation,
which contains the AES S-Boxes. For a given finite field GF(2™) and the corre-
sponding irreducible reduction polynomial P(x), the inverse A~! of a nonzero ele-
ment A € GF(2™) is defined as:

A (x)-A(x) = 1 mod P(x).

For small fields — in practice this often means fields with 2'® or fewer elements
— lookup tables which contain the precomputed inverses of all field elements are
often used. Table 4.2 shows the values which are used within the S-Box of AES.
The table contains all inverses in GF(2%) modulo P(x) = x® +x* +x* +x+ 1 in
hexadecimal notation. A special case is the entry for the field element 0, for which
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an inverse does not exist. However, for the AES S-Box, a substitution table is needed
that is defined for every possible input value. Hence, the designers defined the S-Box
such that the input value 0 is mapped to the output value 0.

Table 4.2 Multiplicative inverse table in GF(28) for bytes xy used within the AES S-Box
Y

01 2 3 4 5 6 7

8 9 A B C D E F

00 01 8D F6 CB 52 7B D1
74 B4 AA 4B 99 2B 60 5F
3A 6E 5A F1 55 4D A8 C9
2C 45 92 6C F3 39 66 42
1D FE 37 67 2D 31 F5 69
ED 5C 05 CA 4C 24 87 BF
16 5E AF D3 49 A6 36 43
79 B7 97 85 10 B5 BA 3C
7E 7F 80 96 73 BE 56
DE 6A 32 6D D8 8A 84 72
FB 7C 2E C3 8F B8 65 48
0C EO 1F EF 11 75 78 71
0B 28 2F A3 DA D4 E4 OF
7A 07 AE 63 C5 DB E2 EA
B1 0D D6 EB C6 OE CF AD

b
HEHOgOQW»wWo U WwNRF o
©
w

Example 4.7. From Table 4.2 the inverse of

E8 4F 29 CO

BO

El
40
44
BB
25
EC
93

E5

x7 +x6 +x= (11000010)2 = (Cz)hex = (xy)

is given by the element in row C, column 2

(2F )pex = (00101111)y = x5 + 23 + 22 +x+ 1.

This can be verified by multiplication:

(420 4x) (P4 + % +x+1)=1 mod P(x).

Note that the table above does not contain the S-Box itself, which is a bit more
complex and will be described in Sect. 4.4.1.
As an alternative to using lookup tables, one can also explicitly compute inverses.
The main algorithm for computing multiplicative inverses is the extended Euclidean
algorithm, which is introduced in Sect. 6.3.1.

4.4 Internal Structure of AES

In the following, we examine the internal structure of AES. Figure 4.3 shows the
graph of a single AES round. The 16-byte input Ay, ...,Ays is fed byte-wise into the
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S-Box. The 16-byte output By, ..., Bjs is permuted byte-wise in the ShiftRows layer
and mixed by the MixColumn transformation c(x). Finally, the 128-bit subkey k; is
XORed with the intermediate result. We note that AES is a byte-oriented cipher.

alalalal alalalal (alalala) [alafalal
m_mlill Pl bl b
e PPPT TR PTTY PTYY

ShiftRows

MixColumn

Key Addition

Fig. 4.3 AES round function for rounds 1,2,...,n, — 1

This is in contrast to DES, which makes heavy use of bit permutation and can thus
be considered to have a bit-oriented structure.

In order to understand how the data moves through AES, we first imagine that the
state A (i.e., the 128-bit data path) consisting of 16 bytes Ag,Aq,...,A|s is arranged
in a four-by-four byte matrix:

Ag|A4| Ag |Ar2
Ay|As| Ag |Ar3
Az|Ag|A10]|A14
A3|A7|A11|A1s

As we will see in the following, AES operates on elements, columns or rows of
the current state matrix. Similarly, the key bytes are arranged into a matrix with four
rows and four (128-bit key), six (192-bit key) or eight (256-bit key) columns. Here
is, as an example, the state matrix of a 192-bit key:
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ko |ka | kg |k12|ki6| k20
ki |ks| ko |ki3|k17|ka1
ka |ke |k1o|k14|k1g|k22
k3 |k |ki1|kis|kig|k23

We discuss now what happens in each of the layers.

4.4.1 Byte Substitution Layer

As shown in Fig. 4.3, the first layer in each round is the Byte Substitution layer. The
Byte Substitution layer can be viewed as a row of 16 parallel S-Boxes, each with
8 input and output bits. Note that all 16 S-Boxes are identical, unlike DES where
eight different S-Boxes are used. In the layer, each state byte A; is replaced, i.e.,
substituted, by another byte B;:

S(Ai) =B,.

The S-Box is the only nonlinear element of AES, i.e., it holds that ByteSub(A) +
ByteSub(B) # ByteSub(A + B) for two states A and B. The S-Box substitution is a
bijective mapping, i.e., each of the 28 = 256 possible input elements is one-to-one
mapped to one output element. This allows us to uniquely reverse the S-Box, which
is needed for decryption. In software implementations the S-Box is usually realized
as a 256-by-8 bit lookup table with fixed entries, as given in Table 4.3.

Table 4.3 AES S-Box: Substitution values in hexadecimal notation for input byte (xy)
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Example 4.8. Let’s assume the input byte to the S-Box is A; = (C2)x, then the
substituted value is
S((Cz)heX) = (25)hex-
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On a bit level — and remember, the only thing that is ultimate of interest in encryp-
tion is the manipulation of bits — this substitution can be described as:

S(11000010) = (00100101).
<

Even though the S-Box is bijective, it does not have any fixed points, i.e., there
aren’t any input values A; such that S(A;) = A;. Even the zero-input is not a fixed
point: $(00000000) = (01100011).

Example 4.9. Let’s assume the input to the Byte Substitution layer is
(c2,C2,...,C2)
in hexadecimal notation. The output state is then
(25,25,...,25).
o

Mathematical description of the S-Box For readers who are interested in how
the S-Box entries are constructed, a more detailed description now follows. This
description, however, is not necessary for a basic understanding of AES, and the
remainder of this subsection can be skipped without problem. Unlike the DES S-
Boxes, which are essentially random tables that fulfill certain properties, the AES
S-Boxes have a strong algebraic structure. An AES S-Box can be viewed as a two-
step mathematical transformation (Fig. 4.4).

4 GF(2%) B; affine B;
inverse mapping

Fig. 4.4 The two operations within the AES S-Box which computes the function B; = S(A;)

The first part of the substitution is a Galois field inversion, the mathematics of
which were introduced in Sect. 4.3.2. For each input element A;, the inverse is com-
puted: B, = A;l , where both A; and B!, are considered elements in the field GF (2%)
with the fixed irreducible polynomial P(x) = x® 4+ x* +x3 + x+ 1. A lookup table
with all inverses is shown in Table 4.2. Note that the inverse of the zero element does
not exist. However, for AES it is defined that the zero element A; = 0 is mapped to
itself.

In the second part of the substitution, each byte B} is multiplied by a constant bit-
matrix followed by the addition of a constant 8-bit vector. The operation is described

by:
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bo 10001111\ /B /1
by 11000111 (s |1
b| |11100011||ey| o
by| 11110001 |6 [0
b|=|11111000]| |5, | T ]0| ™42
bs| loririroo||el| |1
bs| loorti1ro] |6 | |1
b;) \ooorti11) \p) \o

Note that B’ = (b%,...,b}) is the bitwise vector representation of Bi(x) = A; ' (x).
This second step is referred to as affine mapping. Let’s look at an example of how
the S-Box computations work.

Example 4.10. We assume the S-Box input A; = (11000010), = (C2),,. From Ta-
ble 4.2 we can see that the inverse is:

A7 =B = (2F )ex = (0010 1111)5.

We now apply the B bit vector as input to the affine transformation. Note that the
least significant bit (Isb) b, of B! is at the rightmost position.

B; = (00100101) = (25)pex

Thus, S((C2)ex) = (25) hex» Which is exactly the result that is also given in the S-Box
Table 4.3.
o

If one computes both steps for all 256 possible input elements of the S-Box and
stores the results, one obtains Table 4.3. In most AES implementations, in particular
in virtually all software realizations of AES, the S-Box outputs are not explicitly
computed as shown here, but rather lookup tables like Table 4.3 are used. However,
for hardware implementations it is sometimes advantageous to realize the S-Boxes
as digital circuits which actually compute the inverse followed by the affine map-
ping.

The advantage of using inversion in GF(2%) as the core function of the Byte
Substitution layer is that it provides a high degree of nonlinearity, which in turn
provides optimum protection against some of the strongest known analytical attacks.
The affine step “destroys” the algebraic structure of the Galois field, which in turn
is needed to prevent attacks that would exploit the finite field inversion.

4.4.2 Diffusion Layer

In AES, the Diffusion layer consists of two sublayers, the ShiftfRows transformation
and the MixColumn transformation. We recall that diffusion is the spreading of the
influence of individual bits over the entire state. Unlike the nonlinear S-Box, the
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diffusion layer performs a linear operation on state matrices A, B, i.e., DIFF(A) +
DIFF(B) = DIFF(A + B).

ShiftRows Sublayer

The ShiftRows transformation cyclically shifts the second row of the state matrix
by three bytes to the right, the third row by two bytes to the right and the fourth
row by one byte to the right. The first row is not changed by the ShiftRows trans-
formation. The purpose of the ShiftRows transformation is to increase the diffusion
properties of AES. If the input of the ShiftRows sublayer is given as a state matrix
B= (Bo,Bl AP ,315)2

By |B4| Bs |B12
B |Bs| By |B13
B> |Bs|B1o|B14
B3|B7|B11|Bis

the output is the new state:

By | B4 | Bg |B12 no shift

Bs | Bg |B13| B |«— one position left shift
Bio|B14| By | Bg |«— two positions left shift
Bis| B3 | B7 |By1|«— three positions left shift

4.1)

MixColumn Sublayer

The MixColumn step is a linear transformation which mixes each column of the
state matrix. Since every input byte influences four output bytes, the MixColumn
operation is the major diffusion element in AES. The combination of the ShiftRows
and MixColumn layer makes it possible that after only three rounds every byte of
the state matrix depends on all 16 plaintext bytes.

In the following, we denote the 16-byte input state by B and the 16-byte output
state by C:

MixColumn(B) = C,

where B is the state after the ShiftRows operation as given in Expression (4.1).

Now, each 4-byte column is considered as a vector and multiplied by a fixed
4 x 4 matrix. The matrix contains constant entries. Multiplication and addition of
the coefficients is done in GF(2%). As an example, we show how the first four output
bytes are computed:
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Co 0203 01 01\ /By
| |oto20301] [Bs
G|~ |oto10203| By
Cs 03010102/ \Bs

The second column of output bytes (C4,Cs,Cq,C7) is computed by multiplying
the four input bytes (Bs,Bo,B14,B3) by the same constant matrix, and so on. Fig-
ure 4.3 shows which input bytes are used in each of the four MixColumn operations.

We discuss now the details of the vector—matrix multiplication which forms the
MixColum operations. We recall that each state byte C; and B; is an 8-bit value
representing an element from GF (2%). All arithmetic involving the coefficients is
done in this Galois field. For the constants in the matrix a hexadecimal notation is
used: “01” refers to the GF (2%) polynomial with the coefficients (00000001), i.e., it
is the element 1 of the Galois field; “02” refers to the polynomial with the bit vector
(00000010), i.e., to the polynomial x; and “03” refers to the polynomial with the bit
vector (00000011), i.e., the Galois field element x + 1.

The additions in the vector-matrix multiplication are GF(2%) additions, that is
simple bitwise XORs of the respective bytes. For the multiplication of the con-
stants, we have to realize multiplications with the constants 01, 02 and 03. These
are quite efficient, and in fact, the three constants were chosen such that software
implementation is easy. Multiplication by 01 is multiplication by the identity and
does not involve any explicit operation. Multiplication by 02 and 03 can be done
through table look-up in two 256-by-8 tables. As an alternative, multiplication by
02 can also be implemented as a multiplication by x, which is a left shift by one bit,
and a modular reduction with P(x) = x® 4+ x* + x> 4+ x + 1. Similarly, multiplication
by 03, which represents the polynomial (x+ 1), can be implemented by a left shift
by one bit and addition of the original value followed by a modular reduction with
P(x).

Example 4.11. We continue with our example from Sect. 4.4.1 and assume that the
input state to the MixColumn layer is

B=(25,25,...,25).

In this special case, only two multiplications in GF (2%) have to be done. These are
02-25 and 03 - 25, which can be computed in polynomial notation:

02:25 = x- (X +x>41)
=0+ + X,
03-25=(x+1)- (x> +x*+1)
=P+ +0)+ (@ +x2+1)
=4+ 3+ x40
Since both intermediate values have a degree smaller than 8, no modular reduction

with P(x) is necessary.
The output bytes of C result from the following addition in GF (28):
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01-25 = O+ P2+ 1
01-25 = O+ P2+ 1
02-25 = x°+ pamn X
03-25 = 2%+ X+ B+ 2+ x+ 1
C = X+ x>+ 1,
where i = 0,...,15. This leads to the output state C = (25,25,...,25).
o

4.4.3 Key Addition Layer

The two inputs to the Key Addition layer are the current 16-byte state matrix and
a subkey which also consists of 16 bytes (128 bits). The two inputs are combined
through a bitwise XOR operation. Note that the XOR operation is equal to addi-
tion in the Galois field GF(2). The subkeys are derived in the key schedule that is
described below in Sect. 4.4.4.

4.4.4 Key Schedule

The key schedule takes the original input key (of length 128, 192 or 256 bit) and
derives the subkeys used in AES. Note that an XOR addition of a subkey is used
both at the input and output of AES. This process is sometimes referred to as key
whitening. The number of subkeys is equal to the number of rounds plus one, due
to the key needed for key whitening in the first key addition layer, cf. Fig. 4.2.
Thus, for the key length of 128 bits, the number of rounds is n, = 10, and there are
11 subkeys, each of 128 bits. The AES with a 192-bit key requires 13 subkeys of
length 128 bits, and AES with a 256-bit key has 15 subkeys. The AES subkeys are
computed recursively, i.e., in order to derive subkey k;, subkey k;_; must be known,
etc.

The AES key schedule is word-oriented, where 1 word = 32 bits. Subkeys are
stored in a key expansion array W that consists of words. There are different key
schedules for the three different AES key sizes of 128, 192 and 256 bit, which are
all fairly similar. We introduce the three key schedules in the following.

Key Schedule for 128-Bit Key AES

The 1l subkeys are stored in a key expansion array with the elements W[0], ..., W[43].
The subkeys are computed as depicted in Fig. 4.5. The elements Kj, ..., K5 denote
the bytes of the original AES key.

First, we note that the first subkey kg is the original AES key, i.e., the key is
copied into the first four elements of the key array W. The other array elements are
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Fig. 4.5 AES key schedule for 128-bit key size

computed as follows. As can be seen in the figure, the leftmost word of a subkey
W[4i], where i = 1,...,10, is computed as:

W [4] = WA(i— 1)] + g(W[4i — 1)).

Here g() is a nonlinear function with a four-byte input and output. The remaining
three words of a subkey are computed recursively as:

Wl4i+jl=W[Ai+j—1]+W[4i—-1)+j],

where i = 1,...,10 and j = 1,2,3. The function g() rotates its four input bytes,
performs a byte-wise S-Box substitution, and adds a round coefficient RC to it. The
round coefficient is an element of the Galois field GF (28), i.e, an 8-bit value. It is
only added to the leftmost byte in the function g(). The round coefficients vary from
round to round according to the following rule:
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RC[1] = x° = (00000001),,
RC[2] (00000010),
RC[3] = x* = (00000100),,

RC[10] = x* = (00110110),.

The function g() has two purposes. First, it adds nonlinearity to the key sched-
ule. Second, it removes symmetry in AES. Both properties are necessary to thwart
certain block cipher attacks.

Key Schedule for 192-Bit Key AES

AES with 192-bit key has 12 rounds and, thus, 13 subkeys of 128 bit each. The
subkeys require 52 words, which are stored in the array elements W([0],..., W[51].
The computation of the array elements is quite similar to the 128-bit key case and
is shown in Fig. 4.6. There are eight iterations of the key schedule. (Note that these
key schedule iterations do not correspond to the 12 AES rounds.) Each iteration
computes six new words of the subkey array W. The subkey for the first AES round
is formed by the array elements (W[0],W[1], W[2],W[3]), the second subkey by
the elements (W [4],W[5], W[6],W|[7]), and so on. Eight round coefficients RC][i] are
needed within the function g(). They are computed as in the 128-bit case and range
from RC[1],...,RC[8].

Key Schedule for 256-Bit Key AES

AES with 256-bit key needs 15 subkeys. The subkeys are stored in the 60 words
W[0],...,W[59]. The computation of the array elements is quite similar to the 128-
bit key case and is shown in Fig. 4.7. The key schedule has seven iterations, where
each iteration computes eight words for the subkeys. (Again, note that these key
schedule iterations do not correspond to the 14 AES rounds.) The subkey for the first
AES round is formed by the array elements (W[0],W[1], W[2],W[3]), the second
subkey by the elements (W[4],W[5], W[6], W[7]), and so on. There are seven round
coefficients RC[1],...,RC[7] within the function g() needed, that are computed as
in the 128-bit case. This key schedule also has a function 4() with 4-byte input and
output. The function applies the S-Box to all four input bytes.

In general, when implementing any of the key schedules, two different ap-
proaches exist:

1. Precomputation All subkeys are expanded first into the array W. The encryption
(decryption) of a plaintext (ciphertext) is executed afterwards. This approach is often
taken in PC and server implementations of AES, where large pieces of data are
encrypted under one key. Please note that this approach requires (n,+ 1) - 16 bytes
of memory, e.g., 1116 = 176 bytes if the key size is 128 bits. This is the reason
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Fig. 4.6 AES key schedule for 192-bit key sizes

why such an implementation on a device with limited memory resources, such as a
smart card, is sometimes not desireable.

2. On-the-fly A new subkey is derived for every new round during the encryption
(decryption) of a plaintext (ciphertext). Please note that when decrypting cipher-
texts, the last subkey is XORed first with the ciphertext. Therefore, it is required to
recursively derive all subkeys first and then start with the decryption of a ciphertext
and the on-the-fly generation of subkeys. As a result of this overhead, the decryption
of a ciphertext is always slightly slower than the encryption of a plaintext when the
on-the-fly generation of subkeys is used.
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Fig. 4.7 AES key schedule for 256-bit key size

4.5 Decryption

Because AES is not based on a Feistel network, all layers must actually be in-
verted, i.e., the Byte Substitution layer becomes the Inv Byte Substitution layer,
the ShiftRows layer becomes the Inv ShiftRows layer, and the MixColumn layer
becomes Inv MixColumn layer. However, as we will see, it turns out that the inverse
layer operations are fairly similar to the layer operations used for encryption. In ad-
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dition, the order of the subkeys is reversed, i.e., we need a reversed key schedule. A
block diagram of the decryption function is shown in Fig. 4.8.

Ciphertext
y
kn,.

‘ Key Addition Layer } Transform 7,
inverse of round n, ‘ Inv ShiftRows Layer ‘

‘ Inv Byte Substitution ‘

| kn, -1 —
‘ Key Addition Layer ‘ Transform 1, ~1

inverse of round n,-1

‘ Inv Byte Substitution ‘

4 )

‘ Key Addition Layer } Transform 1

inverse of round 1

‘ Inv Byte Substitution ‘

ko

—

Transform 0

‘ Key Addition Layer }

Plaintext

x=AES '(y)

Fig. 4.8 AES decryption block diagram

Since the last encryption round does not perform the MixColum operation, the
first decryption round also does not contain the corresponding inverse layer. All
other decryption rounds, however, contain all AES layers. In the following, we dis-
cuss the inverse layers of the general AES decryption round (Fig. 4.9). Since the
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XOR operation is its own inverse, the key addition layer in the decryption mode is
the same as in the encryption mode: it consists of a row of plain XOR gates.

Key Addition

Gk

InvMixColumn

{55 G 1

Fig. 4.9 AES decryption round function 1,2,...,n, — 1

Inverse MixColumn Sublayer

After the addition of the subkey, the inverse MixColumn step is applied to the state
(again, the exception is the first decryption round). In order to reverse the MixCol-
umn operation, the inverse of its matrix must be used. The input is a 4-byte column
of the State C which is multiplied by the inverse 4 x 4 matrix. The matrix contains
constant entries. Multiplication and addition of the coefficients is done in GF (28).

Bo OE 0B 0D 09\ (Co
Bi| |090E0BOD| [C
By| T |op 09 0E 0B | | &
B; 0B 0D 09 0E) \C;

The second column of output bytes (B4, Bs, Bg, B7) is computed by multiplying the
four input bytes (Cy4,Cs,Cg,C7) by the same constant matrix, and so on. Each value
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B; and C; is an element from GF (2%). Also, the constants are elements from GF (2%).
The notation for the constants is hexadecimal and is the same as was used for the
MixColumn layer, for example:

0B = (0B)jex = (00001011)y = x> +x+ 1.

Additions in the vector—matrix multiplication are bitwise XORs.

Inverse ShiftRows Sublayer

In order to reverse the ShiftRows operation of the encryption algorithm, we must
shift the rows of the state matrix in the opposite direction. The first row is not
changed by the inverse ShiftRows transformation. If the input of the ShiftRows
sublayer is given as a state matrix B = (By, By, ...,B1s):

By|B4| Bg |B12
B1|Bs| By |B13
B> |Bg|B1o|B14
B3 |B7|B11|B1s

the inverse ShiftRows sublayer yields the output:

By | B4 | Bg |B12 no shift

B3| By | Bs | By |— one position right shift
B1o|B14| B2 | B¢ |— two positions right shift
B7 |B11|B1s| B3 |— three positions right shift

Inverse Byte Substitution Layer

The inverse S-Box is used when decrypting a ciphertext. Since the AES S-Box is
a bijective, i.e., a one-to-one mapping, it is possible to construct an inverse S-Box
such that:

where A; and B; are elements of the state matrix. The entries of the inverse S-Box
are given in Table 4.4.

For readers who are interested in the details of how the entries of inverse S-Box
are constructed, we provide a derivation. However, for a functional understanding
of AES, the remainder of this section can be skipped. In order to reverse the S-
Box substitution, we first have to compute the inverse of the affine transformation.
For this, each input byte B; is considered an element of GF(2%). The inverse affine
transformation on each byte B; is defined by:
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Table 4.4 Inverse AES S-Box: Substitution values in hexadecimal notation for input byte (xy)

ssllesHlwil@N-v A NI o MKV I NIV S Y
N3
=N
>
a
N
B~
) .
(3]
m
~
>
v}
w
wn
oo
n
[es]
(3]
o]
©°
w
~
m
oo
a
N
wn
g
oy
=
™

N\ 01010010\ [b\ [0

| footo1001| (6] [o

, 10010100] [b| |o

| _lotoototof]es| |o
p,| =lootootot| s | |o| ™%
b, 10010010] [bs| |1

| lotooroor||ss| |0

’ 10100100/ \py) \1

where (b7,...,bg) is the bitwise vector representation of B;(x), and (b5, ...,b;) the
result after the inverse affine transformation.

In the second step of the inverse S-Box operation, the Galois field inverse has to
be reversed. For this, note that A; = (Al-_1 )~!. This means that the inverse operation
is reversed by computing the inverse again. In our notation we thus have to compute

A= (B)" ' e GF(2})

with the fixed reduction polynomial P(x) = x® +x* + x> +-x + 1. Again, the zero ele-
ment is mapped to itself. The vector A; = (a7, ...,ap) (representing the field element
a7x’ +---+ayx+ap) is the result of the substitution:

A =S"1(By).

Decryption Key Schedule

Since decryption round one needs the last subkey, the second decryption round
needs the second-to-last subkey and so on, we need the subkey in reversed order
as shown in Fig. 4.8. In practice this is mainly achieved by computing the entire
key schedule first and storing all 11, 13 or 15 subkeys, depending on the number or
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rounds AES is using (which in turn depends on the three key lengths supported by
AES). This precomputation adds usually a small latency to the decryption operation
relative to encryption.

4.6 Implementation in Software and Hardware

We briefly comment on the efficiency of the AES cipher with respect to software
and hardware implementation.

Software

Unlike DES, AES was designed such that an efficient software implementation is
possible. A straightforward implementation of AES which directly follows the data
path description, such as the description given in this chapter, is well suited for 8-
bit processors such as those found on smart cards, but is not particularly efficient
on 32-bit or 64-bit machines, which are common in today’s PCs. In a naive imple-
mentation, all time-critical functions (Byte Substitution, ShiftRows, MixColumn)
operate on individual bytes. Processing 1 byte per instruction is inefficient on mod-
ern 32-bit or 64-bit processors.

However, the Rijndael designers proposed a method which results in fast soft-
ware implementations. The core idea is to merge all round functions (except the
rather trivial key addition) into one table look-up. This results in four tables, each
of which consists of 256 entries, where each entry is 32 bits wide. These tables
are named a 7-Box. Four table accesses yield 32 output bits of one round. Hence,
one round can be computed with 16 table look-ups. On a 1.2-GHz Intel processor,
a throughput of 400 Mbit/s (or 50 MByte/s) is possible. The fastest known imple-
mentation on a 64-bit Athlon CPU achieves a theoretical throughput of more than
1.6 Gbit/s. However, conventional hard disc encryption tools with AES or an open-
source implementation of AES reach a perfomance of a few hundred Mbit/s on
similar platforms.

Hardware

Compared to DES, AES requires more hardware resources for an implementation.
However, due to the high integration density of modern integrated circuits, AES
can be implemented with very high throughputs in modern ASIC or FPGA (field
programmable gate array — these are programmable hardware devices) technol-
ogy. Commercial AES ASICs can exceed throughputs of 10Gbit/sec. Through par-
allelization of AES encryption units on one chip, the speed can be further increased.
It can be said that symmetric encryption with today’s ciphers is extremely fast, not
only compared to asymmetric cryptosystems but also compared to other algorithms
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needed in modern communication systems, such as data compression or signal pro-
cessing schemes.

4.7 Discussion and Further Reading

AES Algorithm and Security A detailed description of the design principles of
AES can be found in [52]. This book by the Rijndael inventors describes the design
of the block cipher. Recent research in context to AES can be found online in the
AES Lounge [68]. This website is a dissemination effort within ECRYPT, the Net-
work of Excellence in Cryptology, and is a rich resource of activities around AES.
It gives many links to further information and papers regarding implementation and
theoretical aspects of AES.

There is currently no analytical attack against AES known which has a com-
plexity less than a brute-force attack. An elegant algebraic description was found
[122], which in turn triggered speculations that this could lead to attacks. Subse-
quent research showed that an attack is, in fact, not feasible. By now, the common
assumption is that the approach will not threaten AES. A good summary on alge-
braic attacks can be found in [43]. In addition, there have been proposals for many
other attacks, including square attack, impossible differential attack or related key
attack. Again, a good source for further references is the AES Lounge.

The standard reference for the mathematics of finite fields is [110]. A very acces-
sible but brief introduction is also given in [19]. The International Workshop on the
Arithmetic of Finite Fields (WAIFI), a relatively new workshop series, is concerned
with both the applications and the theory of Galois fields [171].

Implementation As mentioned in Sect. 4.6, in most software implementations on
modern CPUs special lookup tables are being used (T-Boxes). An early detailed de-
scription of the construction of T-Boxes can be found in [51, Sect. 5]. A description
of a high-speed software implementation on modern 32-bit and 64-bit CPUs is given
in [116, 115]. The bit slicing technique which was developed in the context of DES
is also applicable to AES and can lead to very fast code as shown in [117].

A strong indication for the importance of AES was the recent introduction of
special AES instructions by Intel in CPUs starting in 2008. The instructions allow
these machines to compute the round operation particularly quickly.

There is wealth of literature dealing with hardware implementation of AES.
A good introduction to the area of AES hardware architectures is given in [104,
Chap. 10]. As an example of the variety of AES implementations, reference [86] de-
scribes a very small FPGA implementation with 2.2Mbit/s and a very fast pipelined
FPGA implementation with 25Gbit/s. It is also possible to use the DSP blocks (i.e.,
fast arithmetic units) available on modern FPGAs for AES, which can also yield
throughputs beyond 50Mbit/s [63]. The basic idea in all high-speed architectures is
to process several plaintext blocks in parallel by means of pipelining. On the other
end of the performance spectrum are lightweight architectures which are optimized
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for applications such as RFID. The basic idea here is to serialize the data path, i.e.,
one round is processed in several time steps. Good references are [75, 42].

4.8 Lessons Learned

m AES is a modern block cipher which supports three key lengths of 128, 192 and
256 bit. It provides excellent long-term security against brute-force attacks.

m AES has been studied intensively since the late 1990s and no attacks have been
found that are better than brute-force.

m AES is not based on Feistel networks. Its basic operations use Galois field arith-
metic and provide strong diffusion and confusion.

m AES is part of numerous open standards such as IPsec or TLS, in addition to
being the mandatory encryption algorithm for US government applications. It
seems likely that the cipher will be the dominant encryption algorithm for many
years to come.

m AES is efficient in software and hardware.
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Problems

4.1. Since May 26, 2002, the AES (Advanced Encryption Standard) describes the
official standard of the US government.

1. The evolutionary history of AES differs from that of DES. Briefly describe the
differences of the AES history in comparison to DES.

2. Outline the fundamental events of the developing process.

3. What is the name of the algorithm that is known as AES?

4. Who developed this algorithm?

5. Which block sizes and key lengths are supported by this algorithm?

4.2. For the AES algorithm, some computations are done by Galois Fields (GF).
With the following problems, we practice some basic computations.

Compute the multiplication and addition table for the prime field GF (7). A mul-
tiplication table is a square (here: 7 x 7) table which has as its rows and columns all
field elements. Its entries are the products of the field element at the corresponding
row and column. Note that the table is symmetric along the diagonal. The addition
table is completely analogous but contains the sums of field elements as entries.

4.3. Generate the multiplication table for the extension field GF(23) for the case
that the irreducible polynomial is P(x) = x> 4+ x + 1. The multiplication table is in
this case a 8 x 8 table. (Remark: You can do this manually or write a program for
it.)

4.4. Addition in GF (2*): Compute A(x) + B(x) mod P(x) in GF (2*) using the ir-
reducible polynomial P(x) = x* +x+ 1. What is the influence of the choice of the
reduction polynomial on the computation?

LA(X)=x>+1,B(x)=x +x>+1

2.AX)=x*+1,B(x) =x+1

4.5. Multiplication in GF(2*): Compute A(x) - B(x) mod P(x) in GF(2*) using the
irreducible polynomial P(x) = x* +x+ 1. What is the influence of the choice of the
reduction polynomial on the computation?

1LLAX) =x*+1,B(x) =X +x*> + 1

2.A(x)=x>+1,B(x) =x+1

4.6. Compute in GF (2%):
(Fx+ 1)/ +x0 43 422,

where the irreducible polynomial is the one used by AES, P(x) =x3 +x* + x> +-x+ 1.
Note that Table 4.2 contains a list of all multiplicative inverses for this field.

4.7. We consider the field GF (24), with P(x) = x* +-x+ 1 being the irreducible poly-
nomial. Find the inverses of A(x) = x and B(x) = x*> +x. You can find the inverses
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either by trial and error, i.e., brute-force search, or by applying the Euclidean algo-
rithm for polynomials. (However, the Euclidean algorithm is only sketched in this
chapter.) Verify your answer by multiplying the inverses you determined by A and
B, respectively.

4.8. Find all irreducible polynomials

1. of degree 3 over GF(2),
2. of degree 4 over GF(2).

The best approach for doing this is to consider all polynomials of lower degree and
check whether they are factors. Please note that we only consider monic irreducible
polynomials, i.e., polynomials with the highest coefficient equal to one.

4.9. We consider AES with 128-bit block length and 128-bit key length. What is the
output of the first round of AES if the plaintext consists of 128 ones, and the first
subkey (i.e., the first subkey) also consists of 128 ones? You can write your final
results in a rectangular array format if you wish.

4.10. In the following, we check the diffusion properties of AES after a sin-
gle round. Let W = (wp, w1, wp,w3) = (0x01000000, 0x00000000, 0x00000000,
0x00000000) be the input in 32-bit chunks to a 128-bit AES. The subkeys for the
computation of the result of the first round of AES are Wy, ..., W; with 32 bits each
are given by

ngf(0x2B7E1516
— (0x28AED2A6
— (0xABF71588
= (0x09CF4F3C
wq47(0xA0FAFE17
= (
= (
= (

)
9
)
)

7

0x88542CB1
0x23A33939
0x2A6C7605).

9

)

e

Use this book to figure out how the input is processed in the first round (e.g., S-
Boxes). For the solution, you might also want to write a short computer program or
use an existing one. In any case, indicate all intermediate steps for the computation
of ShiftRows, SubBytes and MixColumns!

1. Compute the output of the first round of AES to the input W and the subkeys
Wo, ..., Wq.

2. Compute the output of the first round of AES for the case that all input bits are
Zero.

3. How many output bits have changed? Remark that we only consider a single
round — after every further round, more output bits will be affected (avalanche

effect).
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4.11. The MixColumn transformation of AES consists of a matrix—vector multipli-
cation in the field GF (2%) with P(x) =x8 +x* +x3 +x+ 1. Let b = (b7x" +...+ bp)
be one of the (four) input bytes to the vector—matrix multiplication. Each input byte
is multiplied with the constants 01, 02 and 03. Your task is to provide exact equa-
tions for computing those three constant multiplications. We denote the result by
d= (dx"+...+dp).

1. Equations for computing the 8 bits of d = 01 - b.
2. Equations for computing the 8 bits of d = 02 - b.
3. Equations for computing the 8 bits of d = 03 - b.

Note: The AES specification uses “01” to represent the polynomial 1, “02” to rep-
resent the polynomial x, and “03” to represent x + 1.

4.12. We now look at the gate (or bit) complexity of the MixColumn function, using
the results from problem 4.11. We recall from the discussion of stream ciphers that
a 2-input XOR gate performs a GF(2) addition.

1. How many 2-input XOR gates are required to perform one constant multiplica-
tion by 01, 02 and 03, respectively, in GF (28).

2. What is the overall gate complexity of a hardware implementation of one matrix—
vector multiplication?

3. What is the overall gate complexity of a hardware implementation of the entire
Diffusion layer? We assume permutations require no gates.

4.13. We consider the first part of the ByteSub operation, i.e, the Galois field inver-
sion.

1. Using Table 4.2, what is the inverse of the bytes 29, F3 and 01, where each byte
is given in hexadecimal notation?

2. Verify your answer by performing a GF (2%) multiplication with your answer and
the input byte. Note that you have to represent each byte first as polynomials in
GF (2%). The MSB of each byte represents the x’ coefficient.

4.14. Your task is to compute the S-Box, i.e., the ByteSub, values for the input bytes
29, F3 and 01, where each byte is given in hexadecimal notation.

1. First, look up the inverses using Table 4.2 to obtain values B'. Now, perform the
affine mapping by computing the matrix—vector multiplication and addition.

2. Verify your result using the S-Box Table 4.3.

3. What is the value of S(0)?

4.15. Derive the bit representation for the following round constants within the key
schedule:

m RC[8

]
m RC[9)
m RC[10]
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4.16. The minimum key length for the AES algorithm is 128 bit. Assume that a
special-purpose hardware key-search machine can test one key in 10 ns on one pro-
cessor. The processors can be parallelized. Assume further that one such processor
costs $10, including overhead. (Note that both the processor speed and the prize are
rather optimistic assumptions.) We assume also that Moore’s Law holds, according
to which processor performance doubles every 18 months.

How long do we have to wait until an AES key search machine can be built
which breaks the algorithm on average in one week and which doesn’t cost more
than $1 million?

4.17. For the following, we assume AES with 192-bit key length. Furthermore, let
us assume an ASIC which can check 3 - 107 keys per second.

1. If we use 100,000 such ICs in parallel, how long does an average key search take?
Compare this period of time with the age of the universe (approx. 10'° years).

2. Assume Moore’s Law will still be valid for the next few years, how many years
do we have to wait until we can build a key search machine to perform an average
key search of AES-192 in 24 hours? Again, assume that we use 100,000 ICs in
parallel.



Chapter 5
More About Block Ciphers

A block cipher is much more than just an encryption algorithm. It can be used as
a versatile building block with which a diverse set of cryptographic mechanisms
can be realized. For instance, we can use them for building different types of block-
based encryption schemes, and we can even use block ciphers for realizing stream
ciphers. The different ways of encryption are called modes of operation and are
discussed in this chapter. Block ciphers can also be used for constructing hash func-
tions, message authentication codes which are also knowns as MACs, or key estab-
lishment protocols, all of which will be described in later chapters. There are also
other uses for block ciphers, e.g., as pseudo-random generators. In addition to modes
of operation, this chapter also discusses two very useful techniques for increasing
the security of block ciphers, namely key whitening and multiple encryption.
In this chapter you will learn

the most important modes of operation for block ciphers in practice

security pitfalls when using modes of operations

the principles of key whitening

why double encryption is not a good idea, and the meet-in-the-middle attack
triple encryption

C. Paar, J. Pelzl, Understanding Cryptography, 123
DOI 10.1007/978-3-642-04101-3_5, (©) Springer-Verlag Berlin Heidelberg 2010
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5.1 Encryption with Block Ciphers: Modes of Operation

In the previous chapters we introduced how DES, 3DES and AES encrypt a block
of data. Of course, in practice one wants typically to encrypt more than one single
8-byte or 16-byte block of plaintext, e.g., when encrypting an e-mail or a computer
file. There are several ways of encrypting long plaintexts with a block cipher. We
introduce several popular modes of operation in this chapter, including

Electronic Code Book mode (ECB),
Cipher Block Chaining mode (CBC),
Cipher Feedback mode (CFB),
Output Feedback mode (OFB),
Counter mode (CTR).

The latter three modes use the block cipher as a building block for a stream cipher.

All of the five modes have one goal: They encrypt data and thus provide confi-
dentiality for a message sent from Alice to Bob. In practice, we often not only want
to keep data confidential, but Bob also wants to know whether the message is re-
ally coming from Alice. This is called authentication and the Galois Counter mode
(GCM), which we will also introduce, is a mode of operation that lets the receiver
(Bob) determine whether the message was really sent by the person he shares a key
with (Alice). Moreover, authentication also allows Bob to detect whether the cipher-
text was altered during transmission. More on authentication is found in Chap. 10.

The ECB and CFB modes require that the length of the plaintext be an exact
multiple of the block size of the cipher used, e.g., a multiple of 16 bytes in the
case of AES. If the plaintext does not have this length, it must be padded. There
are several ways of doing this padding in practice. One possible padding method
is to append a single “1” bit to the plaintext and then to append as many “0” bits
as necessary to reach a multiple of the block length. Should the plaintext be an
exact multiple of the block length, an extra block consisting only of padding bits is
appended.

5.1.1 Electronic Codebook Mode (ECB)

The Electronic Code Book (ECB) mode is the most straightforward way of encrypt-
ing a message. In the following, let e;(x;) denote the encryption of plaintext block
x; with key k using some arbitrary block cipher. Let e,:l (yi) denote the decryption
of ciphertext block y; with key k. Let us assume that the block cipher encrypts (de-
crypts) blocks of size b bits. Messages which exceed b bits are partitioned into b-bit
blocks. If the length of the message is not a multiple of b bits, it must be padded to
a multiple of b bits prior to encryption. As shown in Fig. 5.1, in ECB mode each
block is encrypted separately. The block cipher can, for instance, be AES or 3DES.
Encryption and decryption in the ECB mode is formally described as follows:
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Fig. 5.1 Encryption and decryption in ECB mode

Definition 5.1.1 Electronic Codebook Mode (ECB)

Let e() be a block cipher of block size b, and let x; and y; be bit
strings of length b.

Encryption: y; = e;(x;), i>1

Decryption: x; = ¢, ' (y;)) = ¢, ' (ex(x;)), i>1

It is straightforward to verify the correctness of the ECB mode:

e i) = e (er(x:) = xi.

The ECB mode has advantages. Block synchronization between the encryption
and decryption parties Alice and Bob is not necessary, i.e., if the receiver does not
receive all encrypted blocks due to transmission problems, it is still possible to de-
crypt the received blocks. Similarly, bit errors, e.g., caused by noisy transmission
lines, only affect the corresponding block but not succeeding blocks. Also, block ci-
phers operating in ECB mode can be parallelized, e.g., one encryption unit encrypts
(or decrypts) block 1, the next one block 2, and so on. This is an advantage for
high-speed implementations, but many other modes such as the CFB do not allow
parallelization.

However, as is often the case in cryptography, there are some unexpected weak-
nesses associated with the ECB mode which we will discuss in the following. The
main problem of the ECB mode is that it encrypts highly deterministically. This
means that identical plaintext blocks result in identical ciphertext blocks, as long as
the key does not change. The ECB mode can be viewed as a gigantic code book —
hence the mode’s name — which maps every input to a certain output. Of course, if
the key is changed the entire code book changes, but as long as the key is static the
book is fixed. This has several undesirable consequences. First, an attacker recog-
nizes if the same message has been sent twice simply by looking at the ciphertext.
Deducing information from the ciphertext in this way is called traffic analysis. For
instance, if there is a fixed header that always precedes a message, the header always
results in the same ciphertext. From this, an attacker can, for instance, learn when
a new message has been sent. Second, plaintext blocks are encrypted independently
of previous blocks. If an attacker reorders the ciphertext blocks, this might result in
valid plaintext and the reordering might not be detected. We demonstrate two simple
attacks which exploit these weaknesses of the ECB mode.

The ECB mode is susceptible to substitution attacks, because once a particular
plaintext to ciphertext block mapping x; — y; is known, a sequence of ciphertext
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blocks can easily be manipulated. We demonstrate how a substitution attack could
work in the real world. Imagine the following example of an electronic wire transfer
betweens banks.

Example 5.1. Substitution attack against electronic bank transfer

Let’s assume a protocol for wire transfers between banks (Fig. 5.2). There are five
fields which specify a transfer: the sending bank’s ID and account number, the re-
ceiving bank’s ID and account number, and the amount. We assume now (and this
is a major simplification) that each of the fields has exactly the size of the block
cipher width, e.g., 16 bytes in the case of AES. Furthermore, the encryption key be-
tween the two banks does not change too frequently. Due to the nature of the ECB,
an attacker can exploit the deterministic nature of this mode of operation by simple
substitution of the blocks. The attack details are as follows:

Block # 1 2 3 4 5

Sending | Sending | Receiving | Receiving | Amount
Bank A | Account # | Bank B Account # $

Fig. 5.2 Example for a substitution attack against ECB encryption

1. The attacker, Oscar, opens one account at bank A and one at bank B.

2. Oscar taps the encrypted line of the banking communication network.

3. He sends $1.00 transfers from his account at bank A to his account at bank B
repeatedly. He observes the ciphertexts going through the communication net-
work. Even though he cannot decipher the random-looking ciphertext blocks, he
can check for ciphertext blocks that repeat. After a while he can recognize the
five blocks of his own transfer. He now stores blocks 1, 3 and 4 of these transfers.
These are the encrypted versions of the ID numbers of both banks as well as the
encrypted version of his account at bank B.

4. Recall that the two banks do not change the key too frequently. This means that
the same key is used for several other transfers between bank A and B. By com-
paring blocks 1 and 3 of all subsequent messages with the ones he has stored,
Oscar recognizes all transfers that are made from some account at bank A to
some account at bank B. He now simply replaces block 4 — which contains the
receiving account number — with the block 4 that he stored before. This block
contains Oscar’s account number in encrypted form. As a consequence, all trans-
fers from some account of bank A to some account of bank B are redirected to
go into Oscar’s B account! Note that bank B now has means of detecting that the
block 4 has been replaced in some of the transfers it receives.

5. Withdraw money from bank B quickly and fly to a country that has a relaxed
attitude about the extradition of white-collar criminals.

o

What'’s interesting about this attack is that it works completely without attack-
ing the block cipher itself. So even if we would use AES with a 256-bit key and if
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we would encrypt each block, say, 1000 times, this would not prevent the attack. It
should be stressed, however, that this is not an attack that breaks the block cipher
itself. Messages that are unknown to Oscar still remain confidential. He simply re-
placed parts of the ciphertext with some other (previous) ciphertexts. This is called
a violation of the integrity of the message. There are available techniques for pre-
serving the integrity of a message, namely message authentication codes (MACs)
and digital signatures. Both are widely used in practice to prevent such an attack,
and are introduced in Chaps. 10 and 12. Also, the Galois Counter mode, which is
described below, is an encryption mode with a built-in integrity check. Note that this
attack only works if the key between bank A and B is not changed too frequently.
This is another reason why frequent key freshness is a good idea.
We now look at another problem posed by the ECB mode.

Example 5.2. Encryption of bitmaps in ECB mode

Figure 5.3 clearly shows a major disadvantage of the ECB mode: Identical plaintexts
are mapped to identical ciphertexts. In case of a simple bitmap, the information (text
in the picture) can still be read out from the encrypted picture even though we used
AES with a 256-bit key for encryption. This is because the background consists of
only a few different plaintext blocks which yields a fairly uniformly looking back-
ground in the ciphertext. On the other hand, all plaintext blocks which contain part
of the letters result in random-looking ciphertexts. These random-looking cipher-
texts are clearly distinguishable from the uniform background by the human eye.

CRYPTOGRAPHY
AND
DATA SECURITY

Fig. 5.3 Image and encrypted image using AES with 256-bit key in ECB mode
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This weakness is similar to the attack of the substitution cipher that was intro-
duced in the first example. In both cases, statistical properties in the plaintext are
preserved in the ciphertext. Note that unlike an attack against the substitution cipher
or the above banking transfer attack, an attacker does not have to do anything in the
case here. The human eye automatically makes use of the statistical information.

Both attacks above were examples of the weakness of a deterministic encryption
scheme. Thus, it is usually preferable that different ciphertexts are produced every
time we encrypt the same plaintext. This behavior is called probabilistic encryp-
tion. This can be achieved by introducing some form of randomness, typically in
form of an initialization vector (IV). The following modes of operation all encrypt
probabilistically by means of an I'V.

5.1.2 Cipher Block Chaining Mode (CBC)

There are two main ideas behind the Cipher Block Chaining (CBC) mode. First, the
encryption of all blocks are “chained together” such that ciphertext y; depends not
only on block x; but on all previous plaintext blocks as well. Second, the encryption
is randomized by using an initialization vector (IV). Here are the details of the CBC
mode.

The ciphertext y;, which is the result of the encryption of plaintext block x;, is
fed back to the cipher input and XORed with the succeeding plaintext block x; .
This XOR sum is then encrypted, yielding the next ciphertext y;;, which can then
be used for encrypting x;;2, and so on. This process is shown on the left-hand side
of Fig. 5.4. For the first plaintext block x; there is no previous ciphertext. For this an
IV is added to the first plaintext, which also allows us to make each CBC encryption
nondeterministic. Note that the first ciphertext y; depends on plaintext x; (and the
IV). The second ciphertext depends on the IV, x; and x,. The third ciphertext y3
depends on the IV and x1,x7,x3, and so on. The last ciphertext is a function of all
plaintext blocks and the I'V.

Fig. 5.4 Encryption and decryption in CBC mode

When decrypting a ciphertext block y; in CBC mode, we have to reverse the two
operations we have done on the encryption side. First, we have to reverse the block
cipher encryption by applying the decryption function e~!(). After this we have to
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undo the XOR operation by again XORing the correct ciphertext block. This can
be expressed for general blocks y; as e,{’l(y,-) = x; @ yi—1. The right-hand side of
Fig. 5.4 shows this process. Again, if the first ciphertext block y; is decrypted, the
result must be XORed with the initialization vector IV to determine the plaintext
block xp, i.e., x; =1V ® e;' (y1). The entire process of encryption and decryption
can be described as:

Definition 5.1.2 Cipher block chaining mode (CBC)

Let e() be a block cipher of block size b; let x; and y; be bit strings
of length b; and IV be a nonce of length b.

Encryption (first block): y, = e;(x; ©1V)

Encryption (general block): y; = e;(x; Dyi—1), i>2
Decryption (first block): x; = e ' (y1) © 1V

Decryption (general block): x; = e,:l i) ®yi—1, i>2

We now verify the mode, i.e., we show that the decryption actually reverses the
encryption. For the decryption of the first block y;, we obtain:

dy)) =e ') @IV =€, (ex(x1 ®IV)) DIV = (x; DIV) DIV = x,
For the decryption of all subsequent blocks y;, i > 2, we obtain:
d(y)) =e; ' (y) ®yio1 = ¢ (ex(xi Dyi1)) Byio1 = (i Dyi1) Byi1 =X

If we choose a new IV every time we encrypt, the CBC mode becomes a prob-
abilistic encryption scheme. If we encrypt a string of blocks xp,...,x; once with a
first IV and a second time with a different IV, the two resulting ciphertext sequences
look completely unrelated to each other for an attacker. Note that we do not have
to keep the IV secret. However, in most cases, we want the IV to be a nonce, i.e., a
number used only once. There are many different ways of generating and agreeing
on initialization values. In the simplest case, a randomly chosen number is trans-
mitted in the clear between the two communication parties prior to the encrypted
session. Alternatively it is a counter value that is known to Alice and Bob, and it is
incremented every time a new session starts (which requires that the counter value
must be stored between sessions). It could be derived from values such as Alice’s
and Bob’s ID number, e.g., their IP addresses, together with the current time. Also,
in order to strengthen any of these methods, we can take a value as described above
and ECB-encrypt it once using the block cipher with the key known to Alice and
Bob, and use the resulting ciphertext as the IV. There are some advanced attacks
which also require that the IV is nonpredictable.

It is instructive to discuss whether the substitution attack against the bank trans-
fer that worked for the ECB mode is applicable to the CBC mode. If the IV is
properly chosen for every wire transfer, the attack will not work at all since Os-
car will not recognize any patterns in the ciphertext. If the IV is kept the same for
several transfers, he would recognize the transfers from his account at bank A to
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his account at bank B. However, if he substitutes ciphertext block 4, which is his
encrypted account number, in other wire transfers going from bank A to B, bank
B would decrypt block 4 and 5 to some random value. Even though money would
not be redirected into Oscar’s account, it might be redirected to some other random
account. The amount would be a random value too. This is obviously also highly
undesirable for banks. This example shows that even though Oscar cannot perform
specific manipulations, ciphertext alterations by him can cause random changes to
the plaintext, which can have major negative consequences. Hence in many, if not in
most, real-world systems, encryption itself is not sufficient: we also have to protect
the integrity of the message. This can be achieved by message authentication codes
(MAC:s) or digital signatures, which are introduced in Chap. 12. The Galois Counter
mode described below provides encryption and integrity check simultaneously.

5.1.3 Output Feedback Mode (OFB)

In the Output Feedback (OFB) mode a block cipher is used to build a stream cipher
encryption scheme. This scheme is shown in Fig. 5.5. Note that in OFB mode the
key stream is not generated bitwise but instead in a blockwise fashion. The output
of the cipher gives us b key stream bits, where b is the width of the block cipher
used, with which we can encrypt b plaintext bits using the XOR operation.

The idea behind the OFB mode is quite simple. We start with encrypting an IV
with a block cipher. The cipher output gives us the first set of b key stream bits.
The next block of key stream bits is computed by feeding the previous cipher output
back into the block cipher and encrypting it. This process is repeated as shown in
Fig. 5.5.

The OFB mode forms a synchronous stream cipher (cf. Fig. 2.3) as the key stream
does not depend on the plain or ciphertext. In fact, using the OFB mode is quite sim-
ilar to using a standard stream cipher such as RC4 or Trivium. Since the OFB mode
forms a stream cipher, encryption and decryption are exactly the same operation.
As can be seen in the right-hand part of Fig. 5.5, the receiver does not use the block
cipher in decryption mode e~ () to decrypt the ciphertext. This is because the actual
encryption is performed by the XOR function, and in order to reverse it, i.e., to de-
crypt it, we simply have to perform another XOR function on the receiver side. This
is in contrast to ECB and CBC mode, where the data is actually being encrypted and
decrypted by the block cipher.

Encryption and decryption using the OFB scheme is as follows:
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Fig. 5.5 Encryption and decryption in OFB mode

Definition 5.1.3 Output feedback mode (OFB)

Let ¢() be a block cipher of block size b; let x;, y; and s; be bit
strings of length b; and IV be a nonce of length b.

Encryption (first block): sy = e, (IV) and y; = s1 D x

Encryption (general block): s; = e;(si—1) and y; = s; ®x;, i>2
Decryption (first block): s| = ex(IV) and x; = 51 ®y,

Decryption (general block): s; = ey(si—1) and x; = 5; Dy;, i>2

As a result of the use of an IV, the OFB encryption is also nondeterministic,
hence, encrypting the same plaintext twice results in different ciphertexts. As in the
case for the CBC mode, the IV should be a nonce. One advantage of the OFB mode
is that the block cipher computations are independent of the plaintext. Hence, one
can precompute one or several blocks s; of key stream material.

5.1.4 Cipher Feedback Mode (CFB)

The Cipher Feedback (CFB) mode also uses a block cipher as a building block for a
stream cipher. It is similar to the OFB mode but instead of feeding back the output
of the block cipher, the ciphertext is fed back. (Hence, a somewhat more accurate
term for this mode would have been “Ciphertext Feedback mode”.) As in the OFB
mode, the key stream is not generated bitwise but instead in a blockwise fashion.
The idea behind the CFB mode is as follows: To generate the first key stream block
s1, we encrypt an IV. For all subsequent key stream blocks s, 53, ..., we encrypt the
previous ciphertext. This scheme is shown in Fig. 5.6.

Since the CFB mode forms a stream cipher, encryption and decryption are exactly
the same operation. The CFB mode is an example of an asynchronous stream cipher
(cf. Fig. 2.3) since the stream cipher output is also a function of the ciphertext.

The formal description of the CFB mode follows:
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Fig. 5.6 Encryption and decryption in CFB mode

Definition 5.1.4 Cipher feedback mode (CFB)

Let e() be a block cipher of block size b; let x; and y; be bit strings
of length b; and IV be a nonce of length b.

Encryption (first block): y, = e (IV) @ x)

Encryption (general block): y; = ey (yi—1) ®x;, i>2
Decryption (first block): x| = e, (IV) ®y;

Decryption (general block): x; = e;(yi_1) Dyi, i>2

As a result of the use of an IV, the CFB encryption is also nondeterministic,
hence, encrypting the same plaintext twice results in different ciphertexts. As in the
case for the CBC and OFB modes, the IV should be a nonce.

A variant of the CFB mode can be used in situations where short plaintext blocks
are to be encrypted. Let’s use the encryption of the link between a (remote) key-
board and a computer as an example. The plaintexts generated by the keyboard are
typically only 1 byte long, e.g., an ASCII character. In this case, only 8 bits of the
key stream are used for encryption (it does not matter which ones we choose as they
are all secure), and the ciphertext also only consists of 1 byte. The feedback of the
ciphertext as input to the block cipher is a bit tricky. The previous block cipher input
is shifted by 8 bit positions to the left, and the 8 least significant positions of the in-
put register are filled with the ciphertext byte. This process repeats. Of course, this
approach works not only for plaintext blocks of length 8, but for any lengths shorter
than the cipher output.

5.1.5 Counter Mode (CTR)

Another mode which uses a block cipher as a stream cipher is the Counter (CTR)
mode. As in the OFB and CFB modes, the key stream is computed in a blockwise
fashion. The input to the block cipher is a counter which assumes a different value
every time the block cipher computes a new key stream block. Figure 5.7 shows the
principle.

We have to be careful how to initialize the input to the block cipher. We must
prevent using the same input value twice. Otherwise, if an attacker knows one of
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initial value counter value

Fig. 5.7 Encryption and decryption in counter mode

the two plaintexts that were encrypted with the same input, he can compute the key
stream block and thus immediately decrypt the other ciphertext. In order to achieve
this uniqueness, often the following approach is taken in practice. Let’s assume a
block cipher with an input width of 128 bits, such as an AES. First we choose
an IV that is a nonce with a length smaller than the block length, e.g., 96 bits.
The remaining 32 bits are then used by a counter with the value CTR which is
initialized to zero. For every block that is encrypted during the session, the counter
is incremented but the IV stays the same. In this example, the number of blocks we
can encrypt without choosing a new IV is 232, Since every block consists of 8 bytes,
a maximum of 8 x 232 = 2% bytes, or about 32 Gigabytes, can be encrypted before
anew I'V must be generated. Here is a formal description of the Counter mode with
a cipher input construction as just introduced:

Definition 5.1.5 Counter mode (CTR)

Let () be a block cipher of block size b, and let x; and y; be bit
strings of length b. The concatenation of the initialization value IV
and the counter CTR; is denoted by (IV||CTR;) and is a bit string
of length b.

Encryption: y; = ¢;(IV||CTR;) ®x;, i>1

Decryption: x; = e, (IV||CTR;) ®y;, i>1

Please note that the string (IV||CTR;) does not have to be kept secret. It can, for
instance, be generated by Alice and sent to Bob together with the first ciphertext
block. The counter CTR can either be a regular integer counter or a slightly more
complex function such as a maximum-length LFSR.

One might wonder why so many modes are needed. One attractive feature of the
Counter mode is that it can be parallelized because, unlike the OFB or CFB mode, it
does not require any feedback. For instance, we can have two block cipher engines
running in parallel, where the first block cipher encrypts the counter value CT R} and
the other CTR, at the same time. When the two block cipher engines are finished,
the first engine encrypts the value CTR3 and the other one CT R4, and so on. This
scheme would allow us to encrypt at twice the data rate of a single implementation.
Of course, we can have more than two block ciphers running in parallel, increasing
the speed-up proportionally. For applications with high throughput demands, e.g.,
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in networks with data rates in the range of Gigabits per second, encryption modes
that can be parallelized are very desirable.

5.1.6 Galois Counter Mode (GCM)

The Galois Counter Mode (GCM) is an encryption mode which also computes a
message authentication code (MAC) [160]. A MAC provides a cryptographic check-
sum that is computed by the sender, Alice, and appended to the message. Bob also
computes a MAC from the message and checks whether his MAC is the same as
the one computed by Alice. This way, Bob can make sure that (1) the message was
really created by Alice and (2) that nobody tampered with the ciphertext during
transmission. These two properties are called message authentication and integrity,
respectively. Much more about MAC:s is found in Chap. 12. We presented a slightly
simplified version of the GCM mode in the following.

GCM protects the confidentiality of the plaintext x by using an encryption in
counter mode. Additionally, GCM protects not only the authenticity of the plaintext
x but also the authenticity of a string AAD called additional authenticated data.
This authenticated data is, in contrast to the plaintext, left in clear in this mode of
operation. In practice, the string AAD might include addresses and parameters in a
network protocol.

The GCM consists of an underlying block cipher and a Galois field multiplier
with which the two GCM functions authenticated encryption and authenticated de-
cryption are realized. The cipher needs to have a block size of 128 bits such as AES.
On the sender side, GCM encrypts data using the Counter Mode (CTR) followed by
the computation of a MAC value. For encryption, first an initial counter is derived
from an IV and a serial number. Then the initial counter value is incremented, and
this value is encrypted and XORed with the first plaintext block. For subsequent
plaintexts, the counter is incremented and then encrypted. Note that the underlying
block cipher is only used in encryption mode. GCM allows for precomputation of
the block cipher function if the initialization vector is known ahead of time.

For authentication, GCM performs a chained Galois field multiplication. For ev-
ery plaintext x; an intermediate authentication parameter g; is derived. g; is com-
puted as the XOR sum of the current ciphertext y; and g;, and multiplied by the
constant H. The value H is a hash subkey which is generated by encryption of the
all-zero input with the block cipher. All multiplications are in the 128-bit Galois
field GF (2'?%) with the irreducible polynomial P(x) = x'?8 4-x7 + x> +x + 1. Since
only one multiplication is required per block cipher encryption, the GCM mode adds
very little computational overhead to the encryption.



5.1 Encryption with Block Ciphers: Modes of Operation 135

Definition 5.1.6 Basic Galois Counter mode (GCM)

Let e() be a block cipher of block size 128 bit; let x be the plaintext
consisting of the blocks xi,...,x,, and let AAD be the additional
authenticated data.

1. Encryption

a. Derive a counter value CTRy from the IV and compute
CTR, =CTRy+ 1.
b. Compute ciphertext: y; = e, (CTR;) ®x;, i>1

2. Authentication

a. Generate authentication subkey H = e;(0)

b. Compute go = AAD x H  (Galois field multiplication)

c. Compute g;i = (gio1 ®y;)) xH, 1<i<n (Galois field
multiplication)

d. Final authentication tag: T = (gy X H) ® ex(CTRy)

Figure 5.8 shows a diagram of the GCM.

€k €k €k

Fig. 5.8 Basic authenticated encryption in Galois Counter mode

The receiver of the packet [(v1,...,yn),T,ADD] decrypts the ciphertext by also
applying the Counter mode. To check the authenticity of the data, the receiver also
computes an authentication tag T’ using the received ciphertext and ADD as input.
He employs exactly the same steps as the sender. If T and T’ match, the receiver is
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assured that the cipertext (and ADD) were not manipulated in transit and that only
the sender could have generated the message.

5.2 Exhaustive Key Search Revisited

In Sect. 3.5.1 we saw that given a plaintext—ciphertext pair (x1,y;) a DES key can
be exhaustively searched using the simple algorithm:

DES (x1) =y, i=0,1,...,2% 1. (5.1)

For most other block ciphers, however, a key search is somewhat more complicated.
Somewhat surprisingly, a brute-force attack can produce false positive results, i.e.,
keys k; are found that are not the one used for the encryption, yet they perform a
correct encryption in Eq. (5.1). The likelihood of this occurring is related to the
relative size of the key space and the plaintext space.

A brute-force attack is still possible, but several pairs of plaintext—ciphertext are
needed. The length of the respective plaintext required to break the cipher with a
brute-force attack is referred to as unicity distance. After trying every possible key,
there should be just one plaintext that makes sense.

Let’s first look why one pair (x,y; ) might not be sufficient to identify the correct
key. For illustration purposes we assume a cipher with a block width of 64 bit and a
key size of 80 bit. If we encrypt x; under all possible 23 keys, we obtain 28 cipher-
texts. However, there exist only 264 different ones, and thus some keys must map x;
to the same ciphertext. If we run through all keys for a given plaintext—ciphertext
pair, we find on average 280 /264 = 216 keys that perform the mapping e;(x;) = y;.
This estimation is valid since the encryption of a plaintext for a given key can be
viewed as a random selection of a 64-bit ciphertext string. The phenomenon of mul-
tiple “paths” between a given plaintext and ciphertext is depicted in Fig. 5.9, in
which k() denote the keys that map x; to y;. These keys can be considered key
candidates.

ek(n(x])

S

plaintext space ciphertext space

Fig. 5.9 Multiple keys map between one plaintext and one ciphertext
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Among the approximately 2! key candidates k is the correct one that was used
by to perform the encryption. Let’s call this one the target key. In order to identify
the target key we need a second plaintext—ciphertext pair (x2,y»). Again, there are
about 2'° key candidates that map x; to y,. One of them is the target key. The other
keys can be viewed as randomly drawn from the 280 possible ones. It is crucial to
note that the target key must be present in both sets of key candidates. To determine
the effectiveness of a brute-force attack, the crucial question is now: What is the
likelihood that another (false!) key is contained in both sets? The answer is given by
the following theorem:

Theorem 5.2.1 Given a block cipher with a key length of x bits
and block size of n bits, as well as t plaintext—ciphertext pairs
(x1,01);---, (X, 1), the expected number of false keys which en-
crypt all plaintexts to the corresponding ciphertexts is:

21('7[11

Returning to our example and assuming two plaintext—ciphertext pairs, the likeli-
hood of a false key k that performs both encryptions ey, (x1) =y and ¢ . (x2) =y
is:
280264 _ 548

This value is so small that for almost all practical purposes it is sufficient to test two
plaintext—ciphertext pairs. If the attacker chooses to test three pairs, the likelihood
of a false key decreases to 2807364 = 2112 A5 we saw from this example, the like-
lihood of a false alarm decreases rapidly with the number ¢ of plaintext—ciphertext
pairs. In practice, typically we only need a few pairs.

The theorem above is not only important if we consider an individual block ci-

pher but also if we perform multiple encryptions with a cipher. This issue is ad-
dressed in the following section.

5.3 Increasing the Security of Block Ciphers

In some situations we wish to increase the security of block ciphers, e.g., if a ci-
pher such as DES is available in hardware or software for legacy reasons in a given
application. We discuss two general approaches to strengthen a cipher, multiple en-
cryption and key whitening. Multiple encryption, i.e., encrypting a plaintext more
than once, is already a fundamental design principle of block ciphers, since the
round function is applied many times to the cipher. Our intuition tells us that the
security of a block cipher against both brute-force and analytical attacks increases
by performing multiple encryptions in a row. Even though this is true in principle,
there are a few surprising facts. For instance, doing double encryption does very
little to increase the brute-force resistance over a single encryption. We study this
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counterintuitive fact in the next section. Another very simple yet effective approach
to increase the brute-force resistance of block ciphers is called key whitening; it is
also discussed below.

We note here that when using AES, we already have three different security levels
given by the key lengths of 128, 192 and 256 bits. Given that there are no realistic
attacks known against AES with any of those key lengths, there appears no reason
to perform multiple encryption with AES for practical systems. However, for some
selected older ciphers, especially for DES, multiple encryption can be a useful tool.

5.3.1 Double Encryption and Meet-in-the-Middle Attack

Let’s assume a block cipher with a key length of x bits. For double encryption, a
plaintext x is first encrypted with a key &y, and the resulting ciphertext is encrypted
again using a second key kg. This scheme is shown in Fig. 5.10.

(zr1»ke1)
e, (X)=zp,; (zLa s k) Zr; = €5, (v)
—_— . |t
(220> kr.ov)
X y
— e > e —
n T T
kr, kg

Fig. 5.10 Double encryption and meet-in-the-middle attack

A naive brute-force attack would require us to search through all possible com-
binations of both keys, i.e., the effective key lengths would be 2k and an exhaustive
key search would require 2% - 2% = 22% encryptions (or decryptions). However, using
the meet-in-the-middle attack, the key space is drastically reduced. This is a divide-
and-conquer attack in which Oscar first brute-force-attacks the encryption on the
left-hand side, which requires 2* cipher operations, and then the right encryption,
which again requires 2* operations. If he succeeds with this attack, the total com-
plexity is 2K 4-2% = 2.2% = 2%*1 This is barely more complex than a key search of
a single encryption and of course is much less complex than performing 2%* search
operations.

The attack has two phases. In the first one, the left encryption is brute-forced and
a lookup table is computed. In the second phase the attacker tries to find a match in
the table which reveals both encryption keys. Here are the details of this approach.
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Phase I: Table Computation For a given plaintext x;, compute a lookup table for
all pairs (kz;,zr,i), where ey, (x1) =zz; and i = 1,2,...,2%. These computations
are symbolized by the left arrow in the figure. The z;; are the intermediate values
that occur in between the two encryptions. This list should be ordered by the values
of the z; ;. The number of entries in the table is 2%, with each entry being n + x bits
wide. Note that one of the keys we used for encryption must be the correct target
key, but we still do not know which one it is.

Phase II: Key Matching In order to find the key, we now decrypt yi, i.e., we
perform the computations symbolized by the right arrow in the figure. We select the
first possible key kg 1, €.g., the all-zero key, and compute:

ek_Rl,l (x1> ~ 1

We now check whether zg ; is equal to any of the z; ; values in the table which we
computed in the first phase. If it is not in the table, we increment the key to kg 1,
decrypt y; again, and check whether this value is in the table. We continue until we
have a match.

We now have what is called a collision of two values, i.e., z7; = zg,j. This gives
us two keys: The value z;; is associated with the key k; ; from the left encryption,
and kg ; is the key we just tested from the right encryption. This means there exists
a key pair (kz ;, kg ;) which performs the double encryption:

exg,;(er,,(x1)) =M (5.2)

As discussed in Sect. 5.2, there is a chance that this is not the target key pair we
are looking for since there are most likely several possible key pairs that perform
the mapping x; — y;. Hence, we have to verify additional key candidates by en-
crypting several plaintext—ciphertext pairs according to Eq. (5.2). If the verification
fails for any of the pairs (x1,y;), (x2,¥2),..., we go back to beginning of Phase II
and increment the key kg again and continue with the search.

Let’s briefly discuss how many plaintext—ciphertext pairs we will need to rule
out faulty keys with a high likelihood. With respect to multiple mappings between a
plaintext and a ciphertext as depicted in Fig. 5.9, double encryption can be modeled
as a cipher with 2x key bits and # block bits. In practice, one often has 2k > n,
in which case we need several plaintext—ciphertext pairs. The theorem in Sect. 5.2
can easily be adopted to the case of multiple encryption, which gives us a useful
guideline about how many (x,y) pairs should be available:

Theorem 5.3.1 Given are | subsequent encryptions with a block
cipher with a key length of x bits and block size of n bits, as well as
t plaintext—ciphertext pairs (x1,y1),..., (X, ;). The expected num-
ber of false keys which encrypt all plaintexts to the corresponding

ciphertexts is given by:
211(‘—!}'1
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Let’s look at an example.

Example 5.3. As an example, if we double-encrypt with DES and choose to test
three plaintext—ciphertext pairs, the likelihood of a faulty key pair surviving all three

key tests is:
72:56-3:64 __ 580

Let us examine the computational complexity of the meet-in-the-middle attack.
In the first phase of the attack, corresponding to the left arrow in the figure, we per-
form 2* encryptions and store them in 2¥ memory locations. In the second stage,
corresponding to the right arrow in the figure, we perform a maximum of 2* decryp-
tions and table look-ups. We ignore multiple key tests at this stage. The total cost
for the meet-in-the-middle attack is:

number of encryptions and decryptions = 2% 2% = 2K !

number of storage locations = 2*

This compares to 2% encryptions or decryptions and essentially no storage cost in
the case of a brute-force attack against a single encryption. Even though the storage
requirements go up quite a bit, the costs in computation and memory are still only
proportional to 2¥. Thus, it is widely believed that double encryption is not worth
the effort. Instead, triple encryption should be used; this method is described in the
following section.

Note that for a more exact complexity analysis of the meet-in-the-middle attack,
we would also need take the cost of sorting the table entries in Phase I into account
as well as the table look-ups in Phase II. For our purposes, however, we can ignore
these additional costs.

5.3.2 Triple Encryption

Compared to double encryption, a much more secure approach is the encryption of
a block of data three times in a row:

Y = ek (ex, (ex, (%))
In practice, often a variant of the triple encryption from above is used:
v = e (e, (e (%))

This type of triple encryption is sometimes referred to as encryption—decryption—
encryption (EDE). The reason for this has nothing to do with security. If k1 = k»,
the operation effectively performed is

y=eps(x),
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which is single encryption. Since it is sometimes desirable that one implementation
can perform both triple encryption and single encryption, i.e., in order to interoper-
ate with legacy systems, EDE is a popular choice for triple encryption. Moreover,
for a 112-bit security, it is sufficient to choose two different keys k; and k, and set
k3 = k; in case of 3DES.

Of course, we can still perform a meet-in-the-middle attack as shown in Fig. 5.11.

(zz1 5 ko)
e, (¥) =zpy (zzp » krp) ZRyn = €iny (€Eny, (7))
— . -
(zLpr s krpr)
X y
— e = e . e ——
n T T T
kg kg, kg2

Fig. 5.11 Triple encryption and sketch of a meet-in-the-middle attack

Again, we assume K bits per key. The problem for an attacker is that she has to
compute a lookup table either after the first or after the second encryption. In both
cases, the attacker has to compute two encryptions or decryptions in a row in order
to reach the lookup table. Here lies the cryptographic strength of triple encryption:
There are 2%* possibilities to run through all possible keys of two encryptions or
decryptions. In the case of 3DES, this forces an attacker to perform 2'!2 key tests,
which is entirely infeasible with current technology. In summary, the meet-in-the-
middle attack reduces the effective key length of triple encryption from 3 x to 2 k.
Because of this, it is often said that the effective key length of triple DES is 112 bits
as opposed to 3 - 56 = 168 bits which are actually used as input to the cipher.

5.3.3 Key Whitening

Using an extremely simple technique called key whitening, it is possible to make
block ciphers such as DES much more resistant against brute-force attacks. The
basic scheme is shown in Fig. 5.12.

In addition to the regular cipher key &, two whitening keys k| and k, are used to
XOR-mask the plaintext and ciphertext. This process can be expressed as:
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ki Xi

Y1 4 a
Fig. 5.12 Key whitening of a block cipher

Definition 5.3.1 Key whitening for block ciphers
Encryption: y = ey i, 1, (x) = ex(x D ki) Dko.
Decryption: x = e,;,ll ()= e (Yo k) @k

It is important to stress that key whitening does not strengthen block ciphers
against most analytical attacks such as linear and differential cryptanalysis. This
is in contrast to multiple encryption, which often also increases the resistance to
analytical attacks. Hence, key whitening is not a “cure” for inherently weak ciphers.
Its main application is ciphers that are relatively strong against analytical attacks
but possess too short a key space. The prime example of such a cipher is DES. A
variant of DES which uses key whitening is DESX. In the case of DESX, the key k;
is derived from k and k;. Please note that most modern block ciphers such as AES
already apply key whitening internally by adding a subkey prior to the first round
and after the last round.

Let’s now discuss the security of key whitening. A naive brute-force attack
against the scheme requires 252" search steps, where K is the bit length of the key
and n the block size. Using the meet-in-the-middle attack introduced in Sect. 5.3,
the computational load can be reduced to approximately 251" steps, plus storage
of 2" data sets. However, if the adversary Oscar can collect 2" plaintext—ciphertext
pairs, a more advanced attack exists with a computational complexity of

2K+n—m

cipher operations. Even though we do not introduce the attack here, we’ll briefly
discuss its consequences if we apply key whitening to DES. We assume that the at-
tacker knows 2™ plaintext—ciphertext pairs. Note that the designer of a security sys-
tem can often control how many plaintext—ciphertext are generated before a new key
is established. Thus, the parameter m cannot be arbitrarily increased by the attacker.
Also, since the number of known plaintexts grows exponentially with m, values be-
yond, say, m = 40, seem quite unrealistic. As a practical example, let’s assume key
whitening of DES, and that Oscar can collect a maximum of 232 plaintexts. He now

has to perform
56+64-32 _ 88
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DES computations. Given that with today’s technology even 2°° DES operations re-
quire several days with special hardware, performing 288 encryptions is completely
out of reach. Note that the number of plaintexts (which Oscar is not supposed to
know in most circumstances) corresponds to 32 GByte of data, the collection of
which is also a formidable task in most real-world situations.

A particular attractive feature of key whitening is that the additional computa-
tional load is negligible. A typical block cipher implementation in software requires
several hundred instructions for encrypting one input block. In contrast, a 64-bit
XOR operation only takes 2 instructions on a 32-bit machine, so that the perfor-
mance impact due to key whitening is in the range of 1% or less in most cases.

5.4 Discussion and Further Reading

Modes of Operation After the AES selection process, the US National Institute of
Standards and Technology (NIST) supported the process of evaluating new modes of
operations in a series of special publications and workshops [124]. Currently, there
are eight approved block cipher modes: five for confidentiality (ECB, CBC, CFB,
OFB, CTR), one for authentication (CMAC) and two combined modes for confi-
dentiality and authentication (CCM, GCM). The modes are widely used in practice
and are part of many standards, e.g., for computer networks or banking.

Other Applications for Block Ciphers The most important application of block
ciphers in practice, in addition to data encryption, is Message Authentication Codes
(MACs), which are discussed in Chap. 12. The schemes CBC-MAC, OMAC and
PMAC are constructed with a block cipher. Authenticated Encryption (AE) uses
block ciphers to both encrypt and generate a MAC in order to provide confidentiality
and authentication, respectively. In addition to the GCM introduced in this chapter,
other AE modes include the EAX mode, OCB mode, and GC mode.

Another application is the Cryptographically Secure Pseudo Random Number
Generators (CSPRNG) built from block ciphers. In fact, the stream cipher modes
introduced in this chapter, OFB, CFB and CTR mode, form CSPRNGs. There are
also standards such as [4, Appendix A.2.4] which explicitly specify random number
generators from block ciphers.

Block ciphers can also be used to build cryptographic hash functions, as dis-
cussed in Chap. 11.

Extending Brute-Force Attacks Even though there are no algorithmic shortcuts
to brute-force attacks, there are methods which are efficient if several exhaustive key
searches have to be performed. Those methods are called time—memory tradeoff at-
tacks (TMTO). The general idea is to encrypt a fixed plaintext under a large number
of keys and to store certain intermediate results. This is the precomputation phase,
which is typically at least as complex as a single brute-force attack and which results
in large lookup tables. In the online phase, a search through the tables takes place
which is considerably faster than a brute-force attack. Thus, after the precomputa-
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tion phase, individual keys can be found much more quickly. TMTO attacks were
originally proposed by Hellman [91] and were improved with the introduction of
distinguished points by Rivest [145]. More recently rainbow tables were proposed
to further improve TMTO attacks [131]. A limiting factor of TMTO attacks in prac-
tice is that for each individual attack it is required that the same piece of known
plaintext was encrypted, e.g., a file header.

Block Ciphers and Quantum Computers With the potential rise of quantum
computers in the future, the security of currently used crypto algorithms has to be
reevaluated. (It should be noted that the possible existence of quantum computers in
a few decades from now is hotly debated.) Whereas all popular existing asymmetric
algorithms such as RSA are vulnerable to attacks using quantum computers [153],
symmetric algorithms are much more resilient. A potential quantum computer us-
ing Grover’s algorithm [87] would require only 2(*/2) steps in order to perform a
complete key search on a cipher with a keyspace of 2" elements. Hence, key lengths
of more than 128 bit are required if resistance against quantum computer attacks
is desired. This observation was also the motivation for requiring the 192-bit and
256-bit key lengths for AES. Interestingly, it can be shown that there can be no
quantum algorithm which performs such an attack more efficiently than Grover’s
algorithm [16].

5.5 Lessons Learned

m There are many different ways to encrypt with a block cipher. Each mode of
operation has some advantages and disadvantages.

m Several modes turn a block cipher into a stream cipher.

m There are modes that perform encryption together together with authentication,
i.e., a cryptographic checksum protects against message manipulation.

m The straightforward ECB mode has security weaknesses, independent of the un-
derlying block cipher.

m The counter mode allows parallelization of encryption and is thus suited for high-
speed implementations.

m Double encryption with a given block cipher only marginally improves the resis-
tance against brute-force attacks.

m Triple encryption with a given block cipher roughly doubles the key length.
Triple DES (3DES) has an effective key length of 112 bits.

m Key whitening enlarges the DES key length without much computational over-
head.
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Problems

5.1. Consider the storage of data in encrypted form in a large database using AES.
One record has a size of 16 bytes. Assume that the records are not related to one
another. Which mode would be best suited and why?

5.2. We consider known-plaintext attacks on block ciphers by means of an exhaus-
tive key search where the key is k bits long. The block length counts # bits with
n>k.

1. How many plaintexts and ciphertexts are needed to successfully break a block

cipher running in ECB mode? How many steps are done in the worst case?

2. Assume that the initialization vector IV for running the considered block cipher
in CBC mode is known. How many plaintexts and ciphertexts are now needed to
break the cipher by performing an exhaustive key search? How many steps need
now maximally be done? Briefly describe the attack.

. How many plaintexts and ciphertexts are necessary, if you do not know the IV?

4. Is breaking a block cipher in CBC mode by means of an exhaustive key search

considerably more difficult than breaking an ECB mode block cipher?

W

5.3. In a company, all files which are sent on the network are automatically en-
crypted by using AES-128 in CBC mode. A fixed key is used, and the IV is changed
once per day. The network encryption is file-based, so that the IV is used at the
beginning of every file.

You managed to spy out the fixed AES-128 key, but do not know the recent I'V.
Today, you were able to eavesdrop two different files, one with unidentified content
and one which is known to be an automatically generated temporary file and only
contains the value 0xFF. Briefly describe how it is possible to obtain the unknown
initialization vector and how you are able to determine the content of the unknown
file.

5.4. Keeping the IV secret in OFB mode does not make an exhaustive key search
more complex. Describe how we can perform a brute-force attack with unknown I'V.
What are the requirements regarding plaintext and ciphertext?

5.5. Describe how the OFB mode can be attacked if the IV is not different for each
execution of the encryption operation.

5.6. Propose an OFB mode scheme which encrypts one byte of plaintext at a time,
e.g., for encrypting key strokes from a remote keyboard. The block cipher used is
AES. Perform one block cipher operation for every new plaintext byte. Draw a block
diagram of your scheme and pay particular attention to the bit lengths used in your
diagram (cf. the descripton of a byte mode at the end of Sect. 5.1.4).

5.7. As is so often true in cryptography, it is easy to weaken a seemingly strong
scheme by small modifications. Assume a variant of the OFB mode by which we
only feed back the 8 most significant bits of the cipher output. We use AES and fill
the remaining 120 input bits to the cipher with Os.
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1. Draw a block diagram of the scheme.

2. Why is this scheme weak if we encrypt moderately large blocks of plaintext, say
100 kByte? What is the maximum number of known plaintexts an attacker needs
to completely break the scheme?

3. Let the feedback byte be denoted by FB. Does the scheme become cryptograph-
ically stronger if we feedback the 128-bit value FB,FB,...,FB to the input (i.e.,
we copy the feedback byte 16 times and use it as AES input)?

5.8. In the text, a variant of the CFB mode is proposed which encrypts individual
bytes. Draw a block diagram for this mode when using AES as block cipher. Indicate
the width (in bit) of each line in your diagram.

5.9. We are using AES in counter mode for encrypting a hard disk with 1 TB of
capacity. What is the maximum length of the IV?

5.10. Sometimes error propagation is an issue when choosing a mode of operation
in practice. In order to analyze the propagation of errors, let us assume a bit error
(i.e., a substitution of a “0” bit by a “1” bit or vice versa) in a ciphertext block y;.

1. Assume an error occurs during the transmission in one block of ciphertext, let’s
say y;. Which cleartext blocks are affected on Bob’s side when using the ECB
mode?

2. Again, assume block y; contains an error introduced during transmission. Which
cleartext blocks are affected on Bob’s side when using the CBC mode?

3. Suppose there is an error in the cleartext x; on Alice’s side. Which cleartext
blocks are affected on Bob’s side when using the CBC mode?

4. Assume a single bit error occurs in the transmission of a ciphertext character in
8-bit CFB mode. How far does the error propagate? Describe exactly how each
block is affected.

5. Prepare an overview of the effect of bit errors in a ciphertext block for the modes
ECB, CBC, CFB, OFB and CTR. Differentiate between random bit errors and
specific bit errors when decrypting y;.

5.11. Besides simple bit errors, the deletion or insertion of a bit yields even more
severe effects since the synchronization of blocks is disrupted. In most cases, the
decryption of subsequent blocks will be incorrect. A special case is the CFB mode
with a feedback width of 1 bit. Show that the synchronization is automatically re-
stored after kK + 1 steps, where K is the block size of the block cipher.

5.12. We now analyze the security of DES double encryption (2DES) by doing a
cost-estimate:
2DES(x) = DESk, (DESk, (x))

1. First, let us assume a pure key search without any memory usage. For this pur-
pose, the whole key space spanned by K; and K, has to be searched. How much
does a key-search machine for breaking 2DES (worst case) in 1 week cost?

In this case, assume ASICs which can perform 107 keys per second at a cost of
$5 per IC. Furthermore, assume an overhead of 50% for building the key search
machine.
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2. Let us now consider the meet-in-the-middle (or time-memory tradeoff) attack, in
which we can use memory. Answer the following questions:

m How many entries have to be stored?

m How many bytes (not bits!) have to be stored for each entry?

m How costly is a key search in one week? Please note that the key space has to
be searched before filling up the memory completely. Then we can begin to
search the key space of the second key. Assume the same hardware for both
key spaces.

For a rough cost estimate, assume the following costs for hard disk space:
$8/10 GByte, where 1 GByte = 10° Byte.
3. Assuming Moore’s Law, when do the costs move below $1 million?

5.13. Imagine that aliens — rather than abducting earthlings and performing strange
experiments on them — drop a computer on planet Earth that is particularly suited
for AES key searches. In fact, it is so powerful that we can search through 128, 192
and 256 key bits in a matter of days. Provide guidelines for the number of plaintext—
ciphertext pairs the aliens need so that they can rule out false keys with a reasonable
likelihood. (Remark: Since the existence of both aliens and human-built computers
for such key lengths seem extremely unlikely at the time of writing, this problem is
pure science fiction.)

5.14. Given multiple plaintext—ciphertext pairs, your objective is to attack an en-
cryption scheme based upon multiple encryptions.

1. You want to break an encryption system E, which makes use of triple AES-192
encryption (e.g. block length n = 128 bit, key size of k = 192 bit). How many
tuples (x;,y;) with y; = ek (x;) do you need to level down the probability of finding
a key K, which matches the condition y; = e (x;) for one particular i, but fails
for most other values of i (a so called false positive), to Pr(K' # K) = 27297

2. What is the maximum key size of a block cipher that you could still effectively
attack with an error probability of at most Pr(K’ # K) = 2710 = 1/1024, if this
cipher always uses double encryption (/ = 2) and has a block length of n = 80
bit?

3. Estimate the success probability, if you are provided with four plaintext—ciphertext
blocks which are double encrypted using AES-256 (n = 128 bits, k = 256 bits).
Please justify your results.

Note that this is a purely theoretical problem. Key spaces of size 2'?® and beyond
can not be brute-forced.

5.15. 3DES with three different keys can be broken with about 2% encryptions
and 2% memory cells, k = 56. Design the corresponding attack. How many pairs
(x,y) should be available so that the probability to determine an incorrect key triple
(k1,k2,k3) is sufficiently low?
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5.16. This is your chance to break a cryptosystem. As we know by now, cryptogra-
phy is a tricky business. The following problem illustrates how easy it is to turn a
strong scheme into a weak one with minor modifications.

We saw in this chapter that key whitening is a good technique for strengthening
block ciphers against brute-force attacks. We now look at the following variant of
key whitening against DES, which we’ll call DESA:

DESA (x) = DESi(x) ® k.

Even though the method looks similar to key whitening, it hardly adds to the se-
curity. Your task is to show that breaking the scheme is roughly as difficult as a
brute-force attack against single DES. Assume you have a few pairs of plaintext—
ciphertext.



Chapter 6
Introduction to Public-Key Cryptography

Before we learn about the basics of public-key cryptography, let us recall that the
term public-key cryptography is used interchangeably with asymmetric cryptogra-
phy; they both denote exactly the same thing and are used synonymously.

As stated in Chap. 1, symmetric cryptography has been used for at least 4000
years. Public-key cryptography, on the other hand, is quite new. It was publicly
introduced by Whitfield Diffie, Martin Hellman and Ralph Merkle in 1976. Much
more recently, in 1997 British documents which were declassified revealed that the
researchers James Ellis, Clifford Cocks and Graham Williamson from the UK'’s
Government Communications Headquarters (GCHQ) discovered and realized the
principle of public-key cryptography a few years earlier, in 1972. However, it is
still being debated whether the government office fully recognized the far-reaching
consequences of public-key cryptography for commercial security applications.

In this chapter you will learn:

m A brief history of public-key cryptography

m The pros and cons of public-key cryptography

m Some number theoretical topics that are needed for understanding public-key
algorithms, most importantly the extended Euclidean algorithm

C. Paar, J. Pelzl, Understanding Cryptography, 149
DOI 10.1007/978-3-642-04101-3_6, (©) Springer-Verlag Berlin Heidelberg 2010



150 6 Introduction to Public-Key Cryptography

6.1 Symmetric vs. Asymmetric Cryptography

In this chapter we will see that asymmetric, i.e., public-key, algorithms are very dif-
ferent from symmetric algorithms such as AES or DES. Most public-key algorithms
are based on number-theoretic functions. This is quite different from symmetric ci-
phers, where the goal is usually not to have a compact mathematical description
between input and output. Even though mathematical structures are often used for
small blocks within symmetric ciphers, for instance, in the AES S-Box, this does
not mean that the entire cipher forms a compact mathematical description.

Symmetric Cryptography Revisited

In order to understand the principle of asymmetric cryptography, let us first recall
the basic symmetric encryption scheme in Fig. 6.1.

Alice Bob

k k

Fig. 6.1 Principle of symmetric-key encryption

Such a system is symmetric with respect to two properties:

—_—

The same secret key is used for encryption and decryption.
2. The encryption and decryption function are very similar (in the case of DES they
are essentially identical).

There is a simple analogy for symmetric cryptography, as shown in Fig. 6.2.
Assume there is a safe with a strong lock. Only Alice and Bob have a copy of the
key for the lock. The action of encrypting of a message can be viewed as putting the
message in the safe. In order to read, i.e., decrypt, the message, Bob uses his key
and opens the safe.

Alice

&—. >

Bob

Fig. 6.2 Analogy for symmetric encryption: a safe with one lock
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Modern symmetric algorithms such as AES or 3DES are very secure, fast and
are in widespread use. However, there are several shortcomings associated with
symmetric-key schemes, as discussed below.

Key Distribution Problem The key must be established between Alice and Bob
using a secure channel. Remember that the communication link for the message is
not secure, so sending the key over the channel directly — which would be the most
convenient way of transporting it — can’t be done.

Number of Keys Even if we solve the key distribution problem, we must poten-
tially deal with a very large number of keys. If each pair of users needs a separate
pair of keys in a network with 7 users, there are

n-(n—1)
2

key pairs, and every user has to store n — 1 keys securely. Even for mid-size net-
works, say, a corporation with 2000 people, this requires more than 4 million key
pairs that must be generated and transported via secure channels. More about this
problem is found in Sect. 13.1.3. (There are smarter ways of dealing with keys
in symmetric cryptography networks as detailed in Sect. 13.2; however, those ap-
proaches have other problems such as a single point of failure.)

No Protection Against Cheating by Alice or Bob Alice and Bob have the same
capabilities, since they possess the same key. As a consequence, symmetric cryptog-
raphy cannot be used for applications where we would like to prevent cheating by
either Alice or Bob as opposed to cheating by an outsider like Oscar. For instance,
in e-commerce applications it is often important to prove that Alice actually sent a
certain message, say, an online order for a flat screen TV. If we only use symmet-
ric cryptography and Alice changes her mind later, she can always claim that Bob,
the vendor, has falsely generated the electronic purchase order. Preventing this is
called nonrepudiation and can be achieved with asymmetric cryptography, as dis-
cussed in Sect. 10.1.1. Digital signatures, which are introduced in Chap. 10, provide
nonrepudiation.

Alice Bob
deposit unlock
. S > . S
- > -
public key private key

Fig. 6.3 Analogy for public-key encryption: a safe with public lock for depositing a message and
a secret lock for retrieving a message
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Principles of Asymmetric Cryptography

In order to overcome these drawbacks, Diffie, Hellman and Merkle had a revolution-
ary proposal based on the following idea: It is not necessary that the key possessed
by the person who encrypts the message (that’s Alice in our example) is secret. The
crucial part is that Bob, the receiver, can only decrypt using a secret key. In order
to realize such a system, Bob publishes a public encryption key which is known to
everyone. Bob also has a matching secret key, which is used for decryption. Thus,
Bob’s key k consists of two parts, a public part, k,;, and a private one, k.

A simple analogy of such a system is shown in Fig. 6.3. This systems works quite
similarly to the good old mailbox on the corner of a street: Everyone can put a letter
in the box, i.e., encrypt, but only a person with a private (secret) key can retrieve
letters, i.e., decrypt. If we assume we have cryptosystems with such a functionality,
a basic protocol for public-key encryption looks as shown in Fig. 6.4.

Alice Bob
Kpu
e (kpuh-,kpr) =k
y= ekpub ('x)
y
x=dg,.(y)

Fig. 6.4 Basic protocol for public-key encryption

By looking at that protocol you might argue that even though we can encrypt a
message without a secret channel for key establishment, we still cannot exchange a
key if we want to encrypt with, say, AES. However, the protocol can easily be mod-
ified for this use. What we have to do is to encrypt a symmetric key, e.g., an AES
key, using the public-key algorithm. Once the symmetric key has been decrypted
by Bob, both parties can use it to encrypt and decrypt messages using symmetric
ciphers. Figure 6.5 shows a basic key transport protocol where we use AES as the
symmetric cipher for illustration purposes (of course, one can use any other sym-
metric algorithm in such a protocol). The main advantage of the protocol in Fig. 6.5
over the protocol in Fig. 6.4 is that the payload is encrypted with a symmetric cipher,
which tends to be much faster than an asymmetric algorithm.

From the discussion so far, it looks as though asymmetric cryptography is a
desirable tool for security applications. The question remains how one can build
public-key algorithms. In Chaps. 7, 8 and 9 we introduce most asymmetric schemes
of practical relevance. They are all built from one common principle, the one-way
function. The informal definition of it is as follows:
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Alice Bob
kpub
kpuhvkpr
choose random &
y=ex,, (k)
_r
k=dy, ()
encrypt message x:
= AE Sk (x)
=
x=AES;'(z)

Fig. 6.5 Basic key transport protocol with AES as an example of a symmetric cipher

Definition 6.1.1 One-way function
A function f() is a one-way function if:

1. y= f(x) is computationally easy, and
2. x= f~Y(y) is computationally infeasible.

Obviously, the adjectives “easy” and “infeasible” are not particularly exact. In
mathematical terms, a function is easy to compute if it can be evaluated in polyno-
mial time, i.e., its running time is a polynomial expression. In order to be useful in
practical crypto schemes, the computation y = f(x) should be sufficiently fast that
it does not lead to unacceptably slow execution times in an application. The inverse
computation x = f~!(y) should be so computationally intensive that it is not feasi-
ble to evaluate it in any reasonable time period, say, 10,000 years, when using the
best known algorithm.

There are two popular one-way functions which are used in practical public-key
schemes. The first is the integer factorization problem, on which RSA is based.
Given two large primes, it is easy to compute the product. However, it is very dif-
ficult to factor the resulting product. In fact, if each of the primes has 150 or more
decimal digits, the resulting product cannot be factored, even with thousands of PCs
running for many years. The other one-way function that is used widely is the dis-
crete logarithm problem. This is not quite as intuitive and is introduced in Chap. 8.

6.2 Practical Aspects of Public-Key Cryptography

Actual public-key algorithms will be introduced in the next chapters, since there is
some mathematics we must study first. However, it is very interesting to look at the
principal security functions of public-key cryptography which we address in this
section.
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6.2.1 Security Mechanisms

As shown in the previous section, public-key schemes can be used for encryption of
data. It turns out that we can do many other, previously unimaginable, things with
public-key cryptography. The main functions that they can provide are listed below:

Main Security Mechanisms of Public-Key Algorithms:

Key Establishment There are protocols for establishing secret keys over
an insecure channel. Examples for such protocols include the Diffie—
Hellman key exchange (DHKE) or RSA key transport protocols.

Nonrepudiation Providing nonrepudiation and message integrity can be
realized with digital signature algorithms, e.g., RSA, DSA or ECDSA.

Identification We can identify entities using challenge-and-response pro-
tocols together with digital signatures, e.g., in applications such as smart
cards for banking or for mobile phones.

Encryption We can encrypt messages using algorithms such as RSA or
Elgamal.

We note that identification and encryption can also be achieved with symmetric
ciphers, but they typically require much more effort with key management. It looks
as though public-key schemes can provide all functions required by modern security
protocols. Even though this is true, the major drawback in practice is that encryption
of data is very computationally intensive — or more colloquially: extremely slow —
with public-key algorithms. Many block and stream ciphers can encrypt about one
hundred to one thousand times faster than public-key algorithms. Thus, somewhat
ironically, public-key cryptography is rarely used for the actual encryption of data.
On the other hand, symmetric algorithms are poor at providing nonrepudiation and
key establishment functionality. In order to use the best of both worlds, most practi-
cal protocols are hybrid protocols which incorporate both symmetric and public-key
algorithms. Examples include the SSL/TLS potocol that is commonly used for se-
cure Web connections, or IPsec, the security part of the Internet communication
protocol.

6.2.2 The Remaining Problem: Authenticity of Public Keys

From the discussion so far we’ve seen that a major advantage of asymmetric
schemes is that we can freely distribute public keys, as shown in the protocols in
Figs. 6.4 and 6.5. However, in practice, things are a bit more tricky because we still
have to assure the authenticity of public keys. In other words: Do we really know
that a certain public key belongs to a certain person? In practice, this issue is often
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solved with what is called certificates. Roughly speaking, certificates bind a public
key to a certain identity. This is a major issue in many security application, e.g.,
when doing e-commerce transactions on the Internet. We discuss this topic in more
detail in Sect. 13.3.2.

Another problem, which is not as fundamental, is that public-key algorithms re-
quire very long keys, resulting in slow execution times. The issue of key lengths and
security is discussed below.

6.2.3 Important Public-Key Algorithms

In the previous chapters, we learned about some block ciphers, DES and AES. How-
ever, there exist many other symmetric algorithms. Several hundred algorithms have
been proposed over the years and even though a lot were found not to be secure,
there exist many cryptographically strong ones as discussed in Sect. 3.7. The situa-
tion is quite different for asymmetric algorithms. There are only three major fami-
lies of public-key algorithms which are of practical relevance. They can be classified
based on their underlying computational problem.

Public-Key Algorithm Families of Practical Relevance

Integer-Factorization Schemes Several public-key schemes are based on
the fact that it is difficult to factor large integers. The most prominent rep-
resentative of this algorithm family is RSA.

Discrete Logarithm Schemes There are several algorithms which are
based on what is known as the discrete logarithm problem in finite fields.
The most prominent examples include the Diffie-Hellman key exchange,
Elgamal encryption or the Digital Signature Algorithm (DSA).

Elliptic Curve (EC) Schemes A generalization of the discrete logarithm
algorithm are elliptic curve public-key schemes. The most popular exam-
ples include Elliptic Curve Diffie-Hellman key exchange (ECDH) and the
Elliptic Curve Digital Signature Algorithm (ECDSA).

The first two families were proposed in the mid-1970s, and elliptic curves were
proposed in the mid-1980s. There are no known attacks against any of the schemes
if the parameters, especially the operand and key lengths, are chosen carefully. Al-
gorithms belonging to each of the families will be introduced in Chaps. 7, 8 and
9. It is important to note that each of the three families can be used to provide the
main public-key mechanisms of key establishment, nonrepudiation through digital
signatures and encryption of data.

In addition to the three families above, there have been proposals for several
other public-key schemes. They often lack cryptographic maturity, i.e., it is not
known how robust they are against mathematical attacks. Multivariate quadratic
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(MQ) or some lattice-based schemes are examples of this. Another common prob-
lem is that they have poor implementation characteristics, like key lengths in the
range of megabytes, e.g., the McEliece cryptosystems. However, there are also some
other schemes, for instance, hyperelliptic curve cryptosystems, which are both as ef-
ficient and secure as the three established families shown above, but which simply
have not gained widespread adoption. For most applications it is recommended to
use public-key schemes from the three established algorithm families.

6.2.4 Key Lengths and Security Levels

All three of the established public-key algorithm families are based on number-
theoretic functions. One distinguishing feature of them is that they require arith-
metic with very long operands and keys. Not surprisingly, the longer the operands
and keys, the more secure the algorithms become. In order to compare different
algorithms, one often considers the security level. An algorithm is said to have a
“security level of n bit” if the best known attack requires 2" steps. This is a quite
natural definition because symmetric algorithms with a security level of n have a key
of length n bit. The relationship between cryptographic strength and security is not
as straightforward in the asymmetric case, though. Table 6.1 shows recommended
bit lengths for public-key algorithms for the four security levels 80, 128, 192 and 256
bit. We see from the table that RSA-like schemes and discrete-logarithm schemes
require very long operands and keys. The key length of elliptic curve schemes is
significantly smaller, yet still twice as long as symmetric ciphers with the same
cryptographic strength.

Table 6.1 Bit lengths of public-key algorithms for different security levels

Algorithm Family |Cryptosystems Security Level (bit)

80 128 192 256
Integer factorization | RSA 1024 bit|3072 bit|7680 bit| 15360 bit
Discrete logarithm |DH, DSA, Elgamal | 1024 bit|3072 bit|7680 bit| 15360 bit
Elliptic curves ECDH, ECDSA 160 bit| 256 bit| 384 bit| 512 bit
Symmetric-key AES, 3DES 80 bit| 128 bit| 192 bit| 256 bit

You may want to compare this table with the one given in Sect. 1.3.2, which
provides information about the security estimations of symmetric-key algorithms. In
order to provide long-term security, i.e., security for a timespan of several decades,
a security level of 128 bit should be chosen, which requires fairly long keys for all
three algorithm families.

An undesired consequence of the long operands is that public-key schemes are
extremely arithmetically intensive. As mentioned earlier, it is not uncommon that
one public-operation, say a digital signature, is by 2—-3 orders of magnitude slower
than the encryption of one block using AES or 3DES. Moreover, the computational
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complexity of the three algorithm families grows roughly with the cube bit length.
As an example, increasing the bit length from 1024 to 3076 in a given RSA signature
generation software results in an execution that is 33 = 27 times slower! On modern
PCs, execution times in the range of several 10 msec to a few 100 msec are common,
which does not pose a problem for many applications. However, public-key perfor-
mance can be a more serious bottleneck in constrained devices where small CPUs
are prevalent, e.g., mobile phones or smart cards, or on network servers that have
to compute many public-key operations per second. Chaps. 7, 8 and 9 introduce
several techniques for implementing public-key algorithms reasonably efficiently.

6.3 Essential Number Theory for Public-Key Algorithms

We will now study a few techniques from number theory which are essential for
public-key cryptography. We introduce the Euclidean algorithm, Euler’s phi func-
tion as well as Fermat’s Little Theorem and Euler’s theorem. All are important for
asymmetric algorithms, especially for understanding the RSA crypto scheme.

6.3.1 Euclidean Algorithm

We start with the problem of computing the greatest common divisor (gcd). The ged
of two positive integers 7y and r; is denoted by

gcd(ro,r1)

and is the largest positive number that divides both r( and r. For instance gcd(21,9) =
3. For small numbers, the gcd is easy to calculate by factoring both numbers and
finding the highest common factor.

Example 6.1. Let ro = 84 and r; = 30. Factoring yields
ro=284=2.2.3.7
rp=30=2-3-5

The ged is the product of all common prime factors:

2.3 =6 = ged(30,84)

For the large numbers which occur in public-key schemes, however, factoring
often is not possible, and a more efficient algorithm is used for gcd computations, the
Euclidean algorithm. The algorithm, which is also referred to as Euclid’s algorithm,
is based on the simple observation that
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gcd(ro,r) = ged(rg —r1,11),

where we assume that rg > r, and that both numbers are positive integers. This
property can easily be proven: Let gcd(rg,r;) = g. Since g divides both ry and ry,
we can write rp = g-x and r; = gy, where x >y, and x and y are coprime integers,
i.e., they do not have common factors. Moreover, it is easy to show that (x —y) and
y are also coprime. It follows from here that:

ged(ro—ri,r1) = ged(g- (x—y),8-y) = ¢

Let’s verify this property with the numbers from the previous example:
Example 6.2. Again, let ro = 84 and r; = 30. We now look at the ged of (rg—ry)
and rq:

ro—ry = 54=2-3-3.3
rn=30=2-3-5

The largest common factor still is 2 -3 = 6 = gcd(30,54) = ged(30,84).

o

It also follows immediately that we can apply the process iteratively:
gcd(ro,r1) = ged(rg — ri,r) = ged(rg — 2r1,r1) = -+ = ged(ro—mry,ry)

as long as (ro —m ry) > 0. The algorithm uses the fewest number of steps if we
choose the maximum value for m. This is the case if we compute:

ged(rg,r1) = ged(ro mod ry,ry).

Since the first term (rg mod r) is smaller than the second term r|, we usually swap
them:
ged(ro,r1) = ged(ry,ro mod ry).

The core observation from this process is that we can reduce the problem of
finding the gcd of two given numbers to that of the gcd of two smaller numbers.
This process can be applied recursively until we obtain finally ged(r;,0) = r;. Since
each iteration preserves the gcd of the previous iteration step, it turns out that this
final gcd is the ged of the original problem, i.e.,

gcd(ro,r) =+ +- = ged(r;,0) = ry.

We first show some examples for finding the gcd using the Euclidean algorithm and
then discuss the algorithm a bit more formally.

Example 6.3. Let ro = 27 and r; = 21. Fig. 6.6 gives us some feeling for the al-
gorithm by showing how the lengths of the parameters shrink in every iteration.
The shaded parts in the iteration are the new remainders r, = 6 (first iteration), and
r3 = 3 (second iteration) which form the input terms for the next iterations. Note
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that in the last iteration the remainder is r4 = 0, which indicates the termination of
the algorithm. ¢

‘ 21 ‘ 6 ‘ gcd(27, 21) = ged(1-2146, 21) = ged(21, 6)

‘ 6 ‘ 6 ‘ 6 ‘3‘ gcd(21, 6) = ged(3- 6+3, 6) = ged(6, 3)

gcd(6, 3) = ged(2-3+0, 3) = gcd(3,0) =3

ged(27, 21) = ged(21, 6) = ged(6, 3) = ged(3,0) =3

Fig. 6.6 Example of the Euclidean algorithm for the input values ry =27 and r; = 21

It is also helpful to look at the Euclidean algorithm with slightly larger numbers, as
happens in Example 6.4.

Example 6.4. Let ro =973 and r; = 301. The gcd is then computed as

973 = 3-301 + 70]gcd(973,301) = ged(301,70)
301 =4-70+21 |ged(301,70) = ged(70,21)
( (
( (

70 =3-21+7 |ged(70,21) = ged(21,7)
21 =3-740  |ged(21,7)  =ged(7,0)=7

By now we should have an idea of Euclid’s algorithm, and we can give a more
formal description of the algorithm.

Euclidean Algorithm

Input: positive integers ro and r; with ry > rq
Output: ged(ro,r1)

Initialization: i = 1

Algorithm:
DO

1.1 i =i+l

1.2 ri=1"ri-2 mod ri—1
WHILE r; # 0

2 RETURN

ged(ro,r1) =ricg

Note that the algorithm terminates if a remainder with the value r; = 0 is com-
puted. The remainder computed in the previous iteration, denoted by r;_1, is the gcd
of the original problem.
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The Euclidean algorithm is very efficient, even with the very long numbers typi-
cally used in public-key cryptography. The number of iterations is close to the num-
ber of digits of the input operands. That means, for instance, that the number of
iterations of a gcd involving 1024-bit numbers is 1024 times a constant. Of course,
algorithms with a few thousand iterations can easily be executed on today’s PCs,
making the algorithms very efficient in practice.

6.3.2 Extended Euclidean Algorithm

So far, we have seen that finding the gcd of two integers ro and r; can be done
by recursively reducing the operands. However, it turns out that finding the ged is
not the main application of the Euclidean algorithm. An extension of the algorithm
allows us to compute modular inverses, which is of major importance in public-key
cryptography. In addition to computing the gcd, the extended Euclidean algorithm
(EEA) computes a linear combination of the form:

ged(ro,ry) =s-ro+1-r

where s and ¢ are integer coefficients. This equation is often referred to as Diophan-
tine equation.

The question now is: how do we compute the two coefficients s and #? The idea
behind the algorithm is that we execute the standard Euclidean algorithm, but we
express the current remainder r; in every iteration as a linear combination of the
form

ri = siro +tiry. (6.1)

If we succeed with this, we end up in the last iteration with the equation:
rp = ged(ro,r1) = spro + 1y = sro+try.

This means that the last coefficient s; is the coefficient s in Eq. (6.1) we are looking
for, and also #; = t. Let’s look at an example.

Example 6.5. We consider the extended Euclidean algorithm with the same values as
in the previous example, rop = 973 and r; = 301. On the left-hand side, we compute
the standard Euclidean algorithm, i.e., we compute new remainders 7,73, .. .. Also,
we have to compute the integer quotient ¢;—1 in every iteration. On the right-hand
side we compute the coefficients s; and #; such that r; = s;rg +t;71. The coefficients
are always shown in brackets.
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Fie2 = qio1 - rie1+ri i = [silro+[tin

—

2(973 =3.301+70 |70 = [1ro + 3]
3(301 =4-70+21 21 =301—-4-70
=r1—4(lro—3r)
= [—4]ro+[13]r
4170 =3-21+7 7 =70-3-21

1ro—3r1) —3(—4ry+13r7)
[13]7’0 =+ [—42]7‘1

21 =3-740
The algorithm computed the three parameters gcd(973,301) =7, s = 13 and

t = —42. The correctness can be verified by:

ged(973,301) = 7 = [13]973 4 [—42]301 = 12649 — 12642.

You should carefully watch the algebraic steps taking place in the right column
of the example above. In particular, observe that the linear combination on the right-
hand side is always constructed with the help of the previous linear combinations.
We will now derive recursive formulae for computing s; and r; in every iteration.
Assume we are in iteration with index i. In the two previous iterations we computed
the values

ricy = [siaro + [ti2]ri (6.2)
ric1 = [si—1]ro + [tiz1]m (6.3)

In the current iteration i we first compute the quotient g;_; and the new remainder
ri from r;_ and r;_;:
rip =(qi-1-ri-1+7ri.

This equation can be rewritten as:
ri=Ti2=qi-1-Ti-1- (6.4)

Recall that our goal is to represent the new remainder r; as a linear combination of
ro and r; as shown in Eq. (6.1). The core step for achieving this happens now: in
Eq. (6.4) we simply substitute r;,_ by Eq. (6.2) and r;_; by Eq. (6.3):

ri = (sicaro+ti—ar1) —qi—1(si—1ro+ti—1r1)
If we rearrange the terms we obtain the desired result:

ri = [sica — qic1sioa]ro+ [tica — gicatioa]r (6.5)
ri = [silro+ [ti]r

Eq. (6.5) also gives us immediately the recursive formulae for computing s; and
t;, namely s; = s;_o» —g;—1s5;—1 and t; = t;_» — g;—1t;—1. These recursions are valid
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for index values i > 2. Like any recursion, we need starting values for sg,s1,%,1.
These initial values (which we derive in Problem 6.13) can be shown to be sy =
1,51 =0, = O,l] =1.

Extended Euclidean Algorithm (EEA)
Input: positive integers ro and r; with ry > rq
Output: gcd(rg,r1), as well as s and ¢ such that ged(rg,r1) =s-ro+1-ry.
Initialization:
so =1 to =0
s1=0 =1
i =1
Algorithm:
1 DO
1.1 i =i+l
1.2 147 =Tri-2 mod ri—1
1.3 gi-1 = (ria—ri)/ri1
1.4 Si =82 —qi-1"Si-1
L5 i =tip—qi-1-ti-1
WHILE r; #0
2 RETURN
ged(ro, 1) =iy
s=si_1
=t

As mentioned above, the main application of the EEA in asymmetric cryptog-
raphy is to compute the inverse modulo of an integer. We already encountered this
problem in the context of the affine cipher in Chap. 1. For the affine cipher, we
were required to find the inverse of the key value a modulo 26. With the Euclidean
algorithm, this is straightforward. Let’s assume we want to compute the inverse
of r{ mod ro where r; < rg. Recall from Sect. 1.4.2 that the inverse only exists if
gcd(ro,r1) = 1. Hence, if we apply the EEA, we obtain s-ro+¢-r; = 1 = ged(ro, 7).
Taking this equation modulo g we obtain:

s-ro+t-rp =1
s-0+1-ry = 1 mod ry
ri-t =1 mod rg (6.6)

Equation (6.6) is exactly the definition of the inverse of ;. That means, that ¢ itself

is the inverse of ry:

-1

t=r; mod ry.
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Thus, if we need to compute an inverse a~! mod m, we apply the EEA with the
input parameters m and a. The output value 7 that is computed is the inverse. Let’s
look at an example.

Example 6.6. Our goal is to compute 12! mod 67. The values 12 and 67 are rela-
tively prime, i.e., ged(67,12) = 1. If we apply the EEA, we obtain the coefficients s
and?in ged(67,12) =1 =s-67+1-12. Starting with the values ry = 67 and r| = 12,
the algorithm proceeds as follows:

This gives us the linear combination
—5-674+28-12=1

As shown above, the inverse of 12 follows from here as
127" =28 mod 67.

This result can easily be verified

28-12=336=1 mod 67.

Note that the s coefficient is not needed and is in practice often not computed.
Please note also that the result of the algorithm can be a negative value for t. The
result is still correct, however. We have to compute ¢ = ¢ + ry, which is a valid
operation since t =t + ro mod ry.

For completeness, we show how the EEA can also be used for computing mul-
tiplicative inverses in Galois fields. In modern cryptography this is mainly relevant
for the derivation of the AES S-Boxes and for elliptic curve public-key algorithms.
The EEA can be used completely analogously with polynomials instead of inte-
gers. If we want to compute an inverse in a finite field GF(2™), the inputs to the
algorithm are the field element A(x) and the irreducible polynomial P(x). The EEA
computes the auxiliary polynomials s(x) and #(x), as well as the greatest common
divisor ged(P(x),A(x)) such that:

s(x)P(x) +1(x)A(x) = ged(P(x),A(x)) =1

Note that since P(x) is irreducible, the gcd is always equal to 1. If we take the
equation above and reduce both sides modulo P(x), it is straightforward to see that
the auxiliary polynomial #(x) is equal to the inverse of A(x):
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s(x)0+¢(x)A(x) = 1 mod P(x)
t(x) = A~ (x) mod P(x)

We give at this point an example of the algorithm for the small field GF (23).

Example 6.7. We are looking for the inverse of A(x) = x? in the finite field GF(23)
with P(x) = x* 4+ x + 1. The initial values for the #(x) polynomial are: #y(x) = 0,
h (x) =1

Iteration|r;_»(x) = [q,',1 (x)]r,q(x) + [ri(x)] £ (x)

2 X +x+1 = x>+ [x+1] h=to—qiti1 =0—x1=x

3 x? =[x (x+ 1)+ [x] B=t1—q@th=1—x(x)=1+x

4 x+1 =[1]x+[1] t4:t27q3t3:x71(1+x2)
fh=14x+x%

5 x = [x]1410] Termination since rs =0

Note that polynomial coefficients are computed in GF(2), and since addition and
multiplication are the same operations, we can always replace a negative coefficient
(such as —x) by a positive one. The new quotient and the new remainder that are
computed in every iteration are shown in brackets above. The polynomials f;(x)
are computed according to the recursive formula that was used for computing the
integers #; earlier in this section. The EEA terminates if the remainder is 0, which is
the case in the iteration with index 5. The inverse is now given as the last z;(x) value
that was computed, i.e., 74(x):

AT ) =1(x) =14(x) =X +x+ 1.

Here is the check that #(x) is in fact the inverse of x?, where we use the properties
that x> = x+ 1 mod P(x) and x* = x> +x mod P(x):

2 _ A3
= (x> 4+x)+ (x+ 1) 4 x* mod P(x)
= 1 mod P(x)

ta(x) - x

Note that in every iteration of the EEA, one uses long division (not shown above)
to determine the new quotient g;_; (x) and the new remainder r;(x).

The inverse Table 4.2 in Chap. 4 was computed using the extended Euclidean
algorithm.

6.3.3 Euler’s Phi Function

We now look at another tool that is useful for public-key cryptosystems, especially
for RSA. We consider the ring Z,y,, i.e., the set of integers {0,1,...,m —1}. We are
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interested in the (at the moment seemingly odd) problem of knowing how many
numbers in this set are relatively prime to m. This quantity is given by Euler’s phi
function, which is defined as follows:

Definition 6.3.1 Euler’s Phi Function
The number of integers in Z, relatively prime to m is denoted by
D(m).

We first look at some examples and calculate Euler’s phi function by actually
counting all the integers in Z,, which are relatively prime.

Example 6.8. Let m = 6. The associated set is Z¢ = {0,1,2,3,4,5}.

2cd(0,6) =6
ged(1,6) =1 «
gcd(2,6) =2
gcd(3,6) =3
gcd(4,6) =2
gcd(5,6)=1 %

Since there are two numbers in the set which are relatively prime to 6, namely 1 and
5, the phi function takes the value 2, i.e., @(6) = 2.
o

Here is another example:

Example 6.9. Let m = 5. The associated set is Zs = {0,1,2,3,4}.
gcd(0,5) =5

gcd(1,5)=1 %
gcd(2,5)=1 %
gcd(3,5) =1 x
ged(4,5)=1 %

This time we have four numbers which are relatively prime to 5, hence, @(5) = 4.
o

From the examples above we can guess that calculating Euler’s phi function by
running through all elements and computing the gcd is extremely slow if the num-
bers are large. In fact, computing Euler’s phi function in this naive way is com-
pletely out of reach for the large numbers occurring in public-key cryptography.
Fortunately, there exists a relation to calculate it much more easily if we know the
factorization of m, which is given in following theorem.
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Theorem 6.3.1 Let m have the following canonical factorization
m=pi-p3-...-pi,

where the p; are distinct prime numbers and e; are positive integers,
then

@(m) =[] - pi ).

Since the value of n, i.e., the number of distinct prime factors, is always quite small
even for large numbers m, evaluating the product symbol [] is computationally easy.
Let’s look at an example where we calculate Euler’s phi function using the relation:

Example 6.10. Let m = 240. The factorization of 240 in the canonical factorization
form is
m=240=16-15=2%.3.5=p{" . p> . p$

There are three distinct prime factors, i.e., n = 3. The value for Euler’s phi functions
follows then as:

D(m) = (2 ~2%)(3' ~3%)(5' ~5%) =824 = 64.

That means that 64 integers in the range {0,1,...,239} are coprime to m = 240.
The alternative method, which would have required to evaluate the gcd 240 times,
would have been much slower even for this small number.

o

It is important to stress that we need to know the factorization of m in order to
calculate Euler’s phi function quickly in this manner. As we will see in the next
chapter, this property is at the heart of the RSA public-key scheme: Conversely, if
we know the factorization of a certain number, we can compute Euler’s phi function
and decrypt the ciphertext. If we do not know the factorization, we cannot compute
the phi function and, hence, cannot decrypt.

6.3.4 Fermat’s Little Theorem and Euler’s Theorem

We describe next two theorems which are quite useful in public-key crpytography.
We start with Fermat’s Little Theorem.! The theorem is helpful for primality testing
and in many other aspects of public-key cryptography. The theorem gives a seem-
ingly surprising result if we do exponentiations modulo an integer.

I You should not confuse this with Fermat’s Last Theorem, one of the most famous number-
theoretical problems, which was proved in the 1990s after 350 years.



6.3 Essential Number Theory for Public-Key Algorithms 167

Theorem 6.3.2 Fermat’s Little Theorem
Let a be an integer and p be a prime, then:

a’ =a(mod p).

We note that arithmetic in finite fields GF(p) is done modulo p, and hence, the
theorem holds for all integers a which are elements of a finite field GF(p). The
theorem can be stated in the form:

a’ ' =1 (mod p)

which is often useful in cryptography. One application is the computation of the
inverse in a finite field. We can rewrite the equation as a-a”~2 = 1 (mod p). This
is exactly the definition of the multiplicative inverse. Thus, we immediately have a
way for inverting an integer a modulo a prime:

a ' =a"? (mod p) (6.7)

We note that this inversion method holds only if p is a prime. Let’s look at an
example:

Example 6.11. Let p =7 and a = 2. We can compute the inverse of a as:
aP™?=2>=32=4mod 7.

This is easy to verify: 2-4 =1 mod 7.
o

Performing the exponentiation in Eq. (6.7) is usually slower than using the extended
Euclidean algorithm. However, there are situations where it is advantageous to use
Fermat’s Little Theorem, e.g., on smart cards or other devices which have a hard-
ware accelerator for fast exponentiation anyway. This is not uncommon because
many public-key algorithms require exponentiation, as we will see in subsequent
chapters.

A generalization of Fermat’s Little Theorem to any integer moduli, i.e., moduli
that are not necessarily primes, is Euler’s theorem.

Theorem 6.3.3 Euler’s Theorem
Let a and m be integers with gcd(a,m) = 1, then:

a®™ =1 (mod m).

Since it works modulo m, it is applicable to integer rings Z,,. We show now an
example for Euler’s theorem with small values.

Example 6.12. Let m = 12 and a = 5. First, we compute Euler’s phi function of m:
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O(12)=@(22-3) = (2> -2H(3' -39 =4 -2)3-1)=4.
Now we can verify Euler’s theorem:
5202) — 5% =252 = 625 =1 mod 12.
o

It is easy to show that Fermat’s Little Theorem is a special case of Euler’s theorem.
If p is a prime, it holds that ®(p) = (p' — p®) = p — 1. If we use this value for
Euler’s theorem, we obtain: a®(?) = gP~1 = 1 (mod p), which is exactly Fermat’s
Little Theorem.

6.4 Discussion and Further Reading

Public-Key Cryptography in General Asymmetric cryptography was introduced
in the landmark paper by Whitfield Diffie and Martin Hellman [58]. Ralph Merkle
independently invented the concept of asymmetric cryptography but proposed an
entirely different public-key algorithm [121]. There are a few good accounts of the
history of public-key cryptography. The treatment in [57] by Diffie is recommended.
Another good overview on public-key cryptography is [127]. A very instructive and
detailed history of elliptic curve cryptography, including the relatively intense com-
petition between RSA and ECC during the 1990s, is described in [100]. More recent
development in asymmetric cryptography is tracked by the Workshop on Public-Key
Cryptography (PKC) series.

Modular Arithmetic With respect to the mathematics introduced in this chapter,
the introductory books on number theory recommended in Sect. 1.5 make good
sources for further reading. In practical terms, the Extended Euclidean Algorithm
(EEA) is the most crucial, since virtually all implementations of public-key schemes
incorporate it, especially modular inversion. An important acceleration technique
for the scheme is the binary EEA. Its advantage over the standard EEA is that it
replaces divisions by bit shifts. This is in particular attractive for the very long num-
bers occurring in public-key schemes.

Alternative Public-Key Algorithms In addition to the three established families
of asymmetric schemes, there exist several others. First, there are algorithms which
have been broken or are believed to be insecure, e.g., knapsack schemes. Second,
there are generalizations of the established algorithms, e.g., hyperelliptic curves,
algebraic varieties or non-RSA factoring-based schemes. These schemes use the
same one-way function, that is, integer factorization or the discrete logarithm in
certain groups. Third, there are asymmetric algorithms which are based on differ-
ent one-way functions. Four families of one-way function are of particular interest:
hash-based, code-based, lattice-based and multivariate quadratic (MQ) public-key
algorithms. There are, of course, reasons why they are not as widely used today.
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In most cases, they have either practical drawbacks, such as very long keys (some-
times in the range of several megabytes), or the cryptographic strength is not well
understood. Since about 2005, there has been growing interest in the cryptographic
community in such asymmetric schemes. This is in part motivated by the fact that
no quantum computing attacks are currently known against these four families of
alternative asymmetric schemes. This is in contrast to RSA, discrete logarithm, and
elliptic curve schemes and their variants, which are all vulnerable to attacks using
quantum computers [153]. Even though it is not clear whether quantum computers
will ever exist (the most optimistic estimates state that they are still several decades
away), the alternative public-key algorithms are at times collectively referred to as
post-quantum cryptography. A recent book [18] and a new workshop series [36, 35]
provide more information about this area of active research.

6.5 Lessons Learned

m Public-key algorithms have capabilities that symmetric ciphers don’t have, in
particular digital signature and key establishment functions.

m Public-key algorithms are computationally intensive (a nice way of saying that
they are slow), and hence are poorly suited for bulk data encryption.

m Only three families of public-key schemes are widely used. This is considerably
fewer than in the case of symmetric algorithms.

m The extended Euclidean algorithm allows us to compute modular inverses quickly,
which is important for almost all public-key schemes.

m Euler’s phi function gives us the number of elements smaller than an integer n
that are relatively prime to n. This is an important function for the RSA crypto
scheme.
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Problems

6.1. As we have seen in this chapter, public-key cryptography can be used for en-
cryption and key exchange. Furthermore, it has some properties (such as nonrepu-
diation) which are not offered by secret key cryptography.

So why do we still use symmetric cryptography in current applications?

6.2. In this problem, we want to compare the computational performance of sym-
metric and asymmetric algorithms. Assume a fast public-key library such as
OpenSSL [132] that can decrypt data at a rate of 100 Kbit/sec using the RSA al-
gorithm on a modern PC. On the same machine, AES can decrypt at a rate of
17 Mbit/sec. Assume we want to decrypt a movie stored on a DVD. The movie
requires 1 GByte of storage. How long does decryption take with either algorithm?

6.3. Assume a (small) company with 120 employees. A new security policy de-
mands encrypted message exchange with a symmetric cipher. How many keys are
required, if you are to ensure a secret communication for every possible pair of
communicating parties?

6.4. The level of security in terms of the corresponding bit length directly influ-
ences the performance of the respective algorithm. We now analyze the influence of
increasing the security level on the runtime.

Assume that a commercial Web server for an online shop can use either RSA
or ECC for signature generation. Furthermore, assume that signature generation for
RSA-1024 and ECC-160 takes 15.7 ms and 1.3 ms, respectively.

1. Determine the increase in runtime for signature generation if the security level
from RSA is increased from 1024 bit to 3072 bit.

2. How does the runtime increase from 1024 bit to 15,360 bit?

3. Determine these numbers for the respective security levels of ECC.

4. Describe the difference between RSA and ECC when increasing the security
level.

Hint: Recall that the computational complexity of both RSA and ECC grows with
the cube of bit length. You may want to use Table 6.1 to determine the adequate bit
length for ECC, given the security level of RSA.

6.5. Using the basic form of Euclid’s algorithm, compute the greatest common di-
visor of

1. 7469 and 2464
2. 2689 and 4001

For this problem use only a pocket calculator. Show every iteration step of Euclid’s
algorithm, i.e., don’t write just the answer, which is only a number. Also, for every
gcd, provide the chain of gcd computations, i.e.,

ged(ro, 1) = ged(ry,m) =+
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6.6. Using the extended Euclidean algorithm, compute the greatest common divisor
and the parameters s, of

1. 198 and 243
2. 1819 and 3587

For every problem check if sro+¢r; = ged(rg, 1) is actually fulfilled. The rules are
the same as above: use a pocket calculator and show what happens in every iteration
step.

6.7. With the Euclidean algorithm we finally have an efficient algorithm for finding
the multiplicative inverse in Z,, that is much better than exhaustive search. Find the
inverses in Z,, of the following elements a modulo m:

1. a ="7, m = 26 (affine cipher)
2.a=19, m =999

Note that the inverses must again be elements in Z,, and that you can easily verify
your answers.

6.8. Determine ¢ (m), for m = 12,15,26, according to the definition: Check for each
positive integer n smaller m whether ged(n,m) = 1. (You do not have to apply Eu-
clid’s algorithm.)

6.9. Develop formulae for ¢ (m) for the special cases when

1. mis a prime

2.m = p-q, where p and ¢ are primes. This case is of great importance for the
RSA cryptosystem. Verify your formula for m = 15,26 with the results from the
previous problem.

6.10. Compute the inverse a~' mod n with Fermat’s Theorem (if applicable) or Eu-
ler’s Theorem:

4,
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6.11. Verify that Euler’s Theorem holds in Z,,, m = 6,9, for all elements a for which
gcd(a,m) = 1. Also verify that the theorem does not hold for elements a for which

gcd(a,m) # 1.

6.12. For the affine cipher in Chapter 1 the multiplicative inverse of an element
modulo 26 can be found as
a ' =a'! mod 26.

Derive this relationship by using Euler’s Theorem.

6.13. The extended Euclidean algorithm has the initial conditions so = 1,51 = 0,79 =
0,71 = 1. Derive these conditions. It is helpful to look at how the general iteration
formula for the Euclidean algorithm was derived in this chapter.



Chapter 7
The RSA Cryptosystem

After Whitfield Diffie and Martin Hellman introduced public-key cryptography in
their landmark 1976 paper [58], a new branch of cryptography suddenly opened
up. As a consequence, cryptologists started looking for methods with which public-
key encryption could be realized. In 1977, Ronald Rivest, Adi Shamir and Leonard
Adleman (cf. Fig. 7.1) proposed a scheme which became the most widely used
asymmetric cryptographic scheme, RSA.

Fig. 7.1 An early picture of Adi Shamir, Ron Rivest, and Leonard Adleman (reproduced with
permission from Ron Rivest)

In this chapter you will learn:

m How RSA works

m Practical aspects of RSA, such as computation of the parameters, and fast en-
cryption and decryption

m Security estimations

m Implementational aspects

C. Paar, J. Pelzl, Understanding Cryptography, 173
DOI 10.1007/978-3-642-04101-3_7, (©) Springer-Verlag Berlin Heidelberg 2010
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7.1 Introduction

The RSA crypto scheme, sometimes referred to as the Rivest—Shamir—Adleman al-
gorithm, is currently the most widely used asymmetric cryptographic scheme, even
though elliptic curves and discrete logarithm schemes are gaining ground. RSA was
patented in the USA (but not in the rest of the world) until 2000.

There are many applications for RSA, but in practice it is most often used for:

m encryption of small pieces of data, especially for key transport
m digital signatures, which is discussed in Chap. 10, e.g., for digital certificates on
the Internet

However, it should be noted that RSA encryption is not meant to replace sym-
metric ciphers because it is several times slower than ciphers such as AES. This
is because of the many computations involved in performing RSA (or any other
public-key algorithm) as we learn later in this chapter. Thus, the main use of the
encryption feature is to securely exchange a key for a symmetric cipher (key trans-
port). In practice, RSA is often used together with a symmetric cipher such as AES,
where the symmetric cipher does the actual bulk data encryption.

The underlying one-way function of RSA is the integer factorization problem:
Multiplying two large primes is computationally easy (in fact, you can do it with
paper and pencil), but factoring the resulting product is very hard. Euler’s theorem
(Theorem 6.3.3) and Euler’s phi function play important roles in RSA. In the fol-
lowing, we first describe how encryption, decryption and key generation work, then
we talk about practical aspects of RSA.

7.2 Encryption and Decryption

RSA encryption and decryption is done in the integer ring Z, and modular com-
putations play a central role. Recall that rings and modular arithmetic in rings were
introduced in Sect. 1.4.2. RSA encrypts plaintexts x, where we consider the bit string
representing x to be an element in Z, = {0,1,...,n— 1}. As a consequence the bi-
nary value of the plaintext x must be less than n. The same holds for the ciphertext.
Encryption with the public key and decryption with the private key are as shown
below:

RSA Encryption Given the public key (n,e) = k,,;, and the plaintext x, the
encryption function is:

Y= ek, (x) =x° mod n 7.1

where x,y € Z,.
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RSA Decryption Given the private key d = kp, and the ciphertext y, the
decryption function is:

x=dy,, (y) = v mod n (7.2)

where x,y € Z,.

In practice, x, y, n and d are very long numbers, usually 1024 bit long or more.
The value e is sometimes referred to as encryption exponent or public exponent, and
the private key d is sometimes called decryption exponent or private exponent. If
Alice wants to send an encrypted message to Bob, Alice needs to have his public
key (n,e), and Bob decrypts with his private key d. We discuss in Sect. 7.3 how
these three crucial parameters d, e, and n are generated.

Even without knowing more details, we can already state a few requirements for
the RSA cryptosystem:

1. Since an attacker has access to the public key, it must be computationally infea-
sible to determine the private-key d given the public-key values e and n.

2. Since x is only unique up to the size of the modulus n, we cannot encrypt more
than [ bits with one RSA encryption, where [ is the bit length of n.

3. It should be relatively easy to calculate x* mod n, i.e., to encrypt, and yd mod n,
i.e., to decrypt. This means we need a method for fast exponentiation with very
long numbers.

4. For a given n, there should be many private-key/public-key pairs, otherwise an
attacker might be able to perform a brute-force attack. (It turns out that this re-
quirement is easy to satisfy.)

7.3 Key Generation and Proof of Correctness

A distinctive feature of all asymmetric schemes is that there is a set-up phase dur-
ing which the public and private key are computed. Depending on the public-key
scheme, key generation can be quite complex. As a remark, we note that key gener-
ation is usually not an issue for block or stream ciphers.

Here are the steps involved in computing the public and private-key for an RSA
cryptosystem.
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RSA Key Generation

Output: public key: kp,, = (n,e) and private key: k,, = (d)

1. Choose two large primes p and q.

2. Computen=p-q.

3. Compute @(n) =(p—1)(g—1).

4. Select the public exponent e € {1,2,...,®(n) — 1} such that

ged(e, @(n)) = 1.
5. Compute the private key d such that

d-e = mod @(n)

The condition that ged(e, @(n)) = 1 ensures that the inverse of e exists modulo
@(n), so that there is always a private key d.

Two parts of the key generation are nontrivial: Step 1, in which the two large
primes are chosen, as well as Steps 4 and 5 in which the public and private key
are computed. The prime generation of Step 1 is quite involved and is addressed
in Sect. 7.6. The computation of the keys d and e can be done at once using the
extended Euclidean algorithm (EEA). In practice, one often starts by first selecting a
public parameter e in the range 0 < e < @(n). The value e must satisfy the condition
gcd(e,@(n)) = 1. We apply the EEA with the input parameters n and e and obtain
the relationship:

gcd(D(n),e) =s-D(n)+t-e

If gcd(e, @(n)) = 1, we know that e is a valid public key. Moreover, we also know
that the parameter ¢t computed by the extended Euclidean algorithm is the inverse of
e, and thus:

d =1t mod ®(n)

In case that ¢ and @(n) are not relatively prime, we simply select a new value for
e and repeat the process. Note that the coefficient s of the EEA is not required for
RSA and does not need to be computed.

We now see how RSA works by presenting a simple example.

Example 7.1. Alice wants to send an encrypted message to Bob. Bob first computes
his RSA parameters in Steps 1-5. He then sends Alice his public key. Alice encrypts
the message (x = 4) and sends the ciphertext y to Bob. Bob decrypts y using his
private key.
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Alice Bob
message x = 4 1. choose p=3and g =11
2.n=p-q=33

3.0(n)=3-1)(11-1)=20

4. choose e =3

5.d=e!'=7mod 20
Kpup=(33.3)

y=x*=4%=31 mod 33
y=31

y¢ =317 =4 =x mod 33

Note that the private and public exponents fulfill the condition e-d =3 -7 =
1 mod @(n).
o

Practical RSA parameters are much, much larger. As can be seen from Table 6.1,
the RSA modulus n should be at least 1024 bit long, which results in a bit length for
p and g of 512. Here is an example of RSA parameters for this bit length:

p = EODFD2C2A288ACEBCT05SEFAB30E4447541A8C5A47A37185C5A9
CB98389CE4DE19199AA3069B404F D98C801568CBI170EBT12BF
10B4955CE9C9DCS8CE6855C6123,

q = EBEOFCF21866F DO9ASFODT2F7994875A8D92E6TAEE4B515136B2
ATT8A8048B149828AEA30BD0BA34B977982A3D42168F 594CA99
F3981DDABFAB2369F229640115;,

n = CF33188211FDF6052BDBB1A37235E0ABB5978A45CT71FD381A91
ADI12FCT76DA0544C47568AC83D855D4TCA8D8ATT95T9ABT2E635
DOBOAAAC22D28341E998E90F 82122A2C06090F43A37E0203C2B
T2E401F DO6890ECSEADAF(0TE686E906F01B2468AET7B30CBD670
255C1FEDE1A2762CF4392C0759499CCOABECF FO08728 D9A11ADF),

e = 40B028E1E4CCF07537643101F F72444A0BE1D7682F 1EDBS553E3
ABAF6DD8293CA1945DB12D796AE9244D60565C2EB692A89B888
1D58D278562ED60066DD8211E67315CF 89857167206120405B0
8B54D10DAECAEDA253CT5FATA098F E3FTFBT51FF5121353C554
391E114C85B56A9725E9BD5685D6CICTEEDSEEA442366353DC39,

d = C21A93EET51A8DAFBFDT7285D79D6768C58EBF283743D2889A3
95F266CT8F4A28 ES6F 545960C2CE01EB8ADS5246905163B28D0B
8BAABBI959CCO3F4EC499186168AE9ED6DE8058898907E61CT7CC
CC584D65D801CFE32DFC983707F87F5AA6AEABIETTBICEG30E?2
CODF05841B5E4984D059A35D7270D500514891F7B77B804BEDS1),
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What is interesting is that the message x is first raised to the eth power during
encryption and the result y is raised to the dth power in the decryption, and the
result of this is again equal to the message x. Expressed as an equation, this process
is:

— d _ de _
iy () = i (ex,,, (1)) = (1) =2 = x mod n. 13)

This is the essence of RSA. We will now prove why the RSA scheme works.

Proof. We need to show that decryption is the inverse function of encryption,
di,, (€x,,, (x)) = x. We start with the construction rule for the public and private
key: d-e =1 mod @(n). By definition of the modulo operator, this is equivalent to:

d-e=1+1t-®(n),
where ¢ is some integer. Inserting this expression in Eq. (7.3):

d,, () = x4€ = xH0P0) = @) )l = (k@MY x mod n. (7.4)

pr
This means we have to prove that x = (x®("))’.x mod n. We use now Euler’s The-
orem from Sect. 6.3.3, which states that if gcd(x,n) =1 then 1 = x®®) mod n. A
minor generalization immediately follows:

1=1"= (x®™) mod n, (7.5)

where ¢ is any integer. For the proof we distinguish two cases:

First case: ged(x,n) =1
Euler’s Theorem holds here and we can insert Eq. (7.5) into (7.4):

i, (v) = (x®MY . x=1-x=xmod n. g.ed.

This part of the proof establishes that decryption is actually the inverse func-
tion of encryption for plaintext values x which are relatively prime to the RSA
modulus n. We provide now the proof for the other case.

Second case: ged(x,n) = ged(x,p-q) # 1
Since p and g are primes, x must have one of them as a factor:

X=r-p or Xx=S5-q,

where r,s are integers such that » < g and s < p. Without loss of generality we
assume x = r- p, from which follows that ged(x,q) = 1. Euler’s Theorem holds
in the following form:

1=1"= (x*@) mod ¢,

where ¢ is any positive integer. We now look at the term (x‘p(") )! again:

Using the definition of the modulo operator, this is equivalent to:



7.4 Encryption and Decryption: Fast Exponentiation 179
() =14 u-q,
where u is some integer. We multiply this equation by x:

x.(xq’(”))’ =x+xu-q

=x+(r-p)uq
—xtru-(p-g)
=x+tr-u-n
x- (x®™) = x mod n. (7.6)

Inserting Eq. (7.6) into Eq. (7.4) yields the desired result:

di,, = (x®™) . x = x mod n.
O

If this proof seems somewhat lengthy, please remember that the correctness of
RSA is simply assured by Step 5 of the RSA key generation phase. The proof be-
comes simpler by using the Chinese Remainder Theorem which we have not intro-
duced.

7.4 Encryption and Decryption: Fast Exponentiation

Unlike symmetric algorithms such as AES, DES or stream ciphers, public-key al-
gorithms are based on arithmetic with very long numbers. Unless we pay close
attention to how to realize the necessary computations, we can easily end up with
schemes that are too slow for practical use. If we look at RSA encryption and de-
cryption in Egs. (7.1) and (7.2), we see that both are based on modular exponentia-
tion. We restate both operations here for convenience:

y = ek, (x) =x"mod n (encryption)
x = dy, (y)= v mod n (decryption)
A straightforward way of exponentiation looks like this:

S MUL MUL MUL
X —Q> X2 x3 )C4 )CS cee

where SQ denotes squaring and MU L multiplication. Unfortunately, the exponents
e and d are in general very large numbers. The exponents are typically chosen in the
range of 1024-3072 bit or even larger. (The public exponent e is sometimes chosen
to be a small value, but d is always very long.) Straightforward exponentiation as
shown above would thus require around 2'>* or more multiplications. Since the
number of atoms in the visible universe is estimated to be around 2390, comput-
ing 2'0%* multiplications to set up one secure session for our Web browser is not
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too tempting. The central question is whether there are considerably faster meth-
ods for exponentiation available. The answer is, luckily, yes. Otherwise we could
forget about RSA and pretty much all other public-key cryptosystems in use today,
since they all rely on exponentiation. One such method is the square-and-multiply
algorithm. We first show a few illustrative examples with small numbers before pre-
senting the actual algorithm.

Example 7.2. Let’s look at how many multiplications are required to compute the
simple exponentiation x®. With the straightforward method:

S MUL MUL MUL MUL MUL MUL
X —Q> )C2 )C3 X4 XS X6 )C7 )C8

we need seven multiplications and squarings. Alternatively, we can do something
faster:
SQ 2 SO 4 SO 3
X—x —=x =X
which requires only three squarings that are roughly as complex as a multiplication.
o

This fast method works fine but is restricted to exponents that are powers of 2,
i.e., values e and d of the form 2'. Now the question is, whether we can extend the
method to arbitrary exponents? Let us look at another example:

Example 7.3. This time we have the more general exponent 26, i.e., we want to
compute x*%. Again, the naive method would require 25 multiplications. A faster
way is as follows:
N MUL S S MUL N
x50, 2 MUL 3 5C 6 SO 12 MUL 13 SO 26
This approach takes a total of six operations, two multiplications and four squarings.
o

Looking at the last example, we see that we can achieve the desired result by
performing two basic operations:

1. squaring the current result,
2. multiplying the current result by the base element x.

In the example above we computed the sequence SQ, MUL, SQ, SQ, MUL, SQ.
However, we do not know the sequence in which the squarings and multiplications
have to be performed for other exponents. One solution is the square-and-multiply
algorithm. It provides a systematic way for finding the sequence in which we have
to perform squarings and multiplications by x for computing x”. Roughly speaking,
the algorithm works as follows:

The algorithm is based on scanning the bit of the exponent from the left (the
most significant bit) to the right (the least significant bit). In every iteration, i.e.,
for every exponent bit, the current result is squared. If and only if the currently
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scanned exponent bit has the value 1, a multiplication of the current result by
x is executed following the squaring.

This seems like a simple if somewhat odd rule. For better understanding, let’s
revisit the example from above. This time, let’s pay close attention to the exponent
bits.

Example 7.4. We again consider the exponentiation x*°. For the square-and-multiply
algorithm, the binary representation of the exponent is crucial:

126 — (110105 _  (hahshahiho)s

The algorithm scans the exponent bits, starting on the left with /4 and ending with
the rightmost bit Ag.

Step

#0 x=xD inital setting, bit processed: hy =1
#la (x')? =x*=x10 SQ, bit processed: i3

#1b x2-x=x3 =x10xl2 = 411 MUL, since hz = 1

#2a (x3)? =0 = (x!12)2 = x110: SQ, bit processed: A,

#2b no MUL, since i =0

#3a (x0)? = x12 = (x!102)2 = x1100; SQ, bit processed: h;

#3b x12.x = x13 = x!110025 1> — 1101, MUL, since h; = 1

#4a (x13)? = x26 = (x11012)2 = x11010, SQ, bit processed: A

#4b no MUL, since hg =0

To understand the algorithm it is helpful to closely observe how the binary rep-
resentation of the exponent evolves. We see that the first basic operation, squaring,
results in a left shift of the exponent, with a 0 put in the rightmost position. The other
basic operation, multiplication by x, results in filling a 1 into the rightmost position
of the exponent. Compare how the highlighted exponents change from iteration to
iteration.

o

Here is the pseudo code for the square-and-multiply algorithm:
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Square-and-Multiply for Modular Exponentiation
Input:

base element x

exponent H = Y!_oh;2" with h; € 0,1 and h, = 1

and modulus n

Output: x mod n

Initialization: r = x

Algorithm:

1 FORi=t—1DOWNTOO
1.1 r=r>modn
IFh =1
1.2 r=r-xmodn
2 RETURN (r)

The modulo reduction is applied after each multiplication and squaring operation
in order to keep the intermediate results small. It is helpful to compare this pseudo
code with the verbal description of the algorithm above.

We determine now the complexity of the square-and-multiply algorithm for an
exponent H with a bit length of  + 1, i.e., [log, H] =+ 1. The number of squarings
is independent of the actual value of H, but the number of multiplications is equal
to the Hamming weight, i.e., the number of ones in its binary representation. Thus,
we provide here the average number of multiplication, denoted by MUL:

#50 =t
#MUL = 0.5

Because the exponents used in cryptography have often good random properties,
assuming that half of their bits have the value one is often a valid approximation.

Example 7.5. How many operations are required on average for an exponentiation
with a 1024-bit exponent?

Straightforward exponentiation takes multiplications. That is com-
pletely impossible, no matter what computer resources we might have at hand. How-
ever, the square-and-multiply algorithm requires only

21024 ~ 10300

1.5-1024 = 1536

squarings and multiplications on average. This is an impressive example for the
difference of an algorithm with linear complexity (straightforward exponentiation)
and logarithmic complexity (square-and-multiply algorithm). Remember, though,
that each of the 1536 individual squarings and multiplications involves 1024-bit
numbers. That means the number of integer operations on a CPU is much higher
than 1536, but certainly doable on modern computers.

o
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7.5 Speed-up Techniques for RSA

As we learned in Sect. 7.4, RSA involves exponentiation with very long numbers.
Even if the low-level arithmetic involving modular multiplication and squaring as
well as the square-and-multiply algorithm are implemented carefully, performing a
full RSA exponentiation with operands of length 1024 bit or beyond is computa-
tionally intensive. Thus, people have studied speed-up techniques for RSA since its
invention. We introduce two of the most popular general acceleration techniques in
the following.

7.5.1 Fast Encryption with Short Public Exponents

A surprisingly simple and very powerful trick can be used when RSA operations
with the public key e are concerned. This is in practice encryption and, as we’ll
learn later, verification of an RSA digital signature. In this situation, the public key
e can be chosen to be a very small value. In practice, the three values e =3, e = 17
and e = 2'% + 1 are of particular importance. The resulting complexities when using
these public keys are given in Table 7.1.

Table 7.1 Complexity of RSA exponentiation with short public exponents

Public key e e as binary string|#MUL + #SQ
3 11, 3

17 10001, 5

216 4-1{10000000000000001, 17

These complexities should be compared to the 1.5¢ multiplications and squarings
that are required for exponents of full length. Here # 4 1 is the bit length of the
RSA modulus #, i.e., [logyn] =+ 1. We note that all three exponents listed above
have a low Hamming weight, i.e., number of ones in the binary representation. This
results in a particularly low number of operations for performing an exponentiation.
Interestingly, RSA is still secure if such short exponents are being used. Note that
the private key d still has in general the full bit length # + 1 even though e is short.

An important consequence of the use of short public exponents is that encryption
of a message and verification of an RSA signature is a very fast operation. In fact,
for these two operations, RSA is in almost all practical cases the fastest public-key
scheme available. Unfortunately, there is no such easy way to accelerate RSA when
the private key d is involved, i.e., for decryption and signature generation. Hence,
these two operations tend to be slow. Other public-key algorithms, in particular el-
liptic curves, are often much faster for these two operations. The following section
shows how we can achieve a more moderate speed-up when using the private expo-
nent d.
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7.5.2 Fast Decryption with the Chinese Remainder Theorem

We cannot choose a short private key without compromising the security for RSA.
If we were to select keys d as short as we did in the case of encryption in the section
above, an attacker could simply brute-force all possible numbers up to a given bit
length, i.e., 50 bit. But even if the numbers are larger, say 128 bit, there are key
recovery attacks. In fact, it can be shown that the private key must have a length of
at least 0.3z bit, where 7 is the bit length of the modulus n. In practice, e is often
chosen short and d has full bit length. What one does instead is to apply a method
which is based on the Chinese Remainder Theorem (CRT). We do not introduce
the CRT itself here but merely how it applies to accelerate RSA decryption and
signature generation.

Our goal is to perform the exponentiation x¢ mod n efficiently. First we note that
the party who possesses the private key also knows the primes p and g. The basic
idea of the CRT is that rather than doing arithmetic with one “long” modulus n,
we do two individual exponentiations modulo the two “short” primes p and ¢. This
is a type of transformation arithmetic. Like any transform, there are three steps:
transforming into the CRT domain, computation in the CRT domain, and inverse
transformation of the result. Those three steps are explained below.

Transformation of the Input into the CRT Domain

We simply reduce the base element x modulo the two factors p and g of the modulus
n, and obtain what is called the modular representation of x.

Xxp = xmod p

Xy =xmod g

Exponentiation in the CRT Domain
With the reduced versions of x we perform the following two exponentiations:
dl’
¥p = xp” mod p
d,
yg = X4' mod g
where the two new exponents are given by:

d, =dmod (p—1)
d; =dmod (¢g—1)

Note that both exponents in the transform domain, d, and d,, are bounded by p and
g, respectively. The same holds for the transformed results y,, and y,. Since the two
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primes are in practice chosen to have roughly the same bit length, the two exponents
as well as y,, and y, have about half the bit length of .

Inverse Transformation into the Problem Domain

The remaining step is now to assemble the final result y from its modular represen-
tation (y,,y,). This follows from the CRT and can be done as:

y=lqcplyp+[pcgly, mod n (1.7)

where the coefficients ¢, and ¢, are computed as:
c,,zq’l mod p, cqu’l mod g

Since the primes change very infrequently for a given RSA implementation, the two
expressions in brackets in Eq. (7.7) can be precomputed. After the precomputations,
the entire reverse transformation is achieved with merely two modular multiplica-
tions and one modular addition.

Before we consider the complexity of RSA with CRT, let’s have a look at an
example.

Example 7.6. Let the RSA parameters be given by:

p=11 e =17
g=13 d = e ! =103 mod 120
n=p-q=143

We now compute an RSA decryption for the ciphertext y = 15 using the CRT, i.e.,
the value y? = 15'%% mod 143. In the first step, we compute the modular represen-
tation of y:

yp=15=4 modl1l

yp =15=2 mod13

In the second step, we perform the exponentiation in the transform domain with the
short exponents. These are:

dp
dq

103 = 3 mod 10
103 =7 mod 12

Here are the exponentiations:
X, =y =43 =64=9mod 11
x, =y =27 =128 = 11 mod 13

In the last step, we have to compute x from its modular representation (x,,x,). For
this, we need the coefficients:
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cp=13"=2""=6mod 11  ¢;=11""=6mod 13

The plaintext x follows now as:

[qcplxp +[peglx, mod n
[13-6]9+[11-6]11 mod 143
=702+726 = 1428 = 141 mod 143

X
X
X

<&

If you want to verify the result, you can compute y¢ mod 143 using the square-and-
multiply algorithm.

We will now establish the computational complexity of the CRT method. If we
look at the three steps involved in the CRT-based exponentiation, we conclude that
for a practical complexity analysis the transformation and inverse transformation
can be ignored since the operations involved are negligible compared to the actual
exponentiations in the transform domain. For convenience, we restate these CRT
exponentiations here:

Vp = xi” mod p

Vg = xg" mod g

If we assume that n has 7 + 1 bit, both p and ¢ are about ¢/2 bit long. All numbers
involved in the CRT exponentiations, i.e., x,, X4, d, and d,, are bound in size by
p and g, respectively, and thus also have a length of about #/2 bit. If we use the
square-and-multiply algorithm for the two exponentiations, each requires on average
approximately 1.5¢/2 modular multiplications and squarings. Together, the number
of multiplications and squarings is thus:

#SQ +#MUL=2-151/2 =151

This appears to be exactly the same computational complexity as regular exponen-
tiation without the CRT. However, each multiplication and squaring involves num-
bers which have a length of only 7/2 bit. This is in contrast to the operations without
CRT, where each multiplication was performed with #-bit variables. Since the com-
plexity of multiplication decreases quadratically with the bit length, each 7/2-bit
multiplication is four times faster than a ¢-bit multiplication.! Thus, the total speed-
up obtained through the CRT is a factor of 4. This speed-up by four can be very
valuable in practice. Since there are hardly any drawbacks involved, CRT-based
exponentiations are used in many cryptographic products, e.g., for Web browser
encryption. The method is also particularly valuable for implementations on smart

! The reason for the quadratic complexity is easy to see with the following example. If we multiply
a 4-digit decimal number abcd by another number wxyz, we multiply each digit from the first
operand with each digit of the second operand, for a total of 4> = 16 digit multiplications. On the
other hand, if we multiply two numbers with two digits, i.e., ab times wx, only 2> = 4 elementary
multiplications are needed.
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cards, e.g., for banking applications, which are only equipped with a small micro-
processor. Here, digital signing is often needed, which involves the secret key d. By
applying the CRT for signature computation, the smart card is four times as fast.
For example, if a regular 1024-bit RSA exponentiation takes 3 sec, using the CRT
reduces that time to 0.75 sec. This acceleration might make the difference between a
product with high customer acceptance (0.75 sec) and a product with a delay that is
not acceptable for many applications (3 sec). This example is a good demonstration
how basic number theory can have direct impact in the real world.

7.6 Finding Large Primes

There is one important practical aspect of RSA which we have not discussed yet:
generating the primes p and g in Step 1 of the key generation. Since their product
is the RSA modulus n = p - g, the two primes should have about half the bit length
of n. For instance, if we want to set up RSA with a modulus of length [log,n] =
1024, p and g should have a bit length of about 512 bit. The general approach is
to generate integers at random which are then checked for primality, as depicted in
Fig. 7.2, where RNG stands for random number generator. The RNG should be non
predictable because if an attacker can compute or guess one of the two primes, RSA
can be broken easily as we will see later in this chapter.

p primality P15 Prme
RNG - - test —— or
prime candidate cs “p'is composite”

T

a

Fig. 7.2 Principal approach to generating primes for RSA

In order to make this approach work, we have to answer two questions:

1. How many random integers do we have to test before we have a prime? (If the
likelihood of a prime is too small, it might take too long.)

2. How fast can we check whether a random integer is prime? (Again, if the test is
too slow, the approach is impractical.)

It turns out that both steps are reasonably fast, as is discussed in the following.

7.6.1 How Common Are Primes?

Now we’ll answer the question whether the likelihood that a randomly picked inte-
ger p is a prime is sufficiently high. We know from looking at the first few positive
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integers that primes become less dense as the value increases:
2,3,5,7,11,13,17,19,23,29,31,37,...

The question is whether there is still a reasonable chance that a random number
with, say, 512 bit, is a prime. Luckily, this is the case. The chance that a randomly
picked integer p is a prime follows from the famous prime number theorem and is
approximately 1/In(p). In practice, we only test odd numbers so that the likelihood
doubles. Thus, the probability for a random odd number p to be prime is

P(p is prime) ~

In(p)

In order to get a better feeling for what this probability means for RSA primes, let’s
look at an example:

Example 7.7. For RSA with a 1024-bit modulus n, the primes p and g each should
have a length of about 512 bits, i.e., p,q =~ 2°12. The probability that a random odd
number p is a prime is

2 21

P(p is prime) ~ - S
(P is prlme) 11‘1(2512) 512 ln(2) 177

This means that we expect to test 177 random numbers before we find one that is a
prime.
o

The likelihood of integers being primes decreases slowly, proportional to the bit
length of the integer. This means that even for very long RSA parameters, say with
4096 bit, the density of primes is still sufficiently high.

7.6.2 Primality Tests

The other step we have to do is to decide whether the randomly generated integers p
are primes. A first idea could be to factor the number in question. However, for the
numbers used in RSA, factorization is not possible since p and g are too large. (In
fact, we especially choose numbers that cannot be factored because factoring  is the
best known attack against RSA.) The situation is not hopeless, though. Remember
that we are not interested in the factorization of p. Instead we merely need the
statement whether the number being tested is a prime or not. It turns out that such
primality tests are computationally much easier than factorization. Examples for
primality tests are the Fermat test, the Miller—Rabin test or variants of them. We
introduce primality test algorithms in this section.

Practical primality tests behave somewhat unusually: if the integer p in question
is being fed into a primality test algorithm, the answer is either
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1. “p is composite” (i.e., not a prime), which is always a true statement, or
2. “p is prime”, which is only true with a high probability.

If the algorithm output is “composite”, the situation is clear: The integer in question
is not a prime and can be discarded. If the output statement is “prime”, p is probably
a prime. In rare cases, however, an integers prompts a “prime” statement but it lies,
i.e., it yields an incorrect positive answer. There is way to deal with this behavior.
Practical primality tests are probabilistic algorithms. That means they have a second
parameter a as input which can be chosen at random. If a composite number p
together with a parameter a yields the incorrect statement “p is prime”, we repeat
the test a second time with a different value for a. The general strategy is to test a
prime candidate p so often with several different random values a that the likelihood
that the pair (j,a) lies every single time is sufficiently small, say, less than 273,
Remember that as soon as the statement “p is composite” occurs, we know for
certain that p is not a prime and we can discard it.

Fermat Primality Test

One primality test is based on Fermat’s Little Theorem, Theorem (6.3.2).

Fermat Primality Test
Input: prime candidate p and security parameter s

13

Output: statement “p is composite” or “p is likely prime”

Algorithm:

1 FORi=1TO s

1.1 choose random a € {2,3,...,p—2}
1.2 IFa? ' £1

1.3 RETURN (“p is composite™)

2 RETURN (“p is likely prime”)

The idea behind the test is that Fermat’s theorem holds for all primes. Hence,
if a number is found for which a?~! # 1 in Step 1.2, it is certainly not a prime.
However, the reverse is not true. There could be composite numbers which in fact
fulfill the condition a”~! = 1. In order to detect them, the algorithm is run s times
with different values of a.

Unfortunately, there are certain composite integers which behave like primes in
the Fermat test for many values of a. These are the Carmichael numbers. Given a
Carmichael number C, the following expression holds for all integers a for which
gcd(a,C) = 1:

a® ' =1modC

Such special composites are very rare. For instance, there exist approximately only
100,000 Carmichael numbers below 10'.
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Example 7.8. Carmichael Number
n=>561=3-11-17 is a Carmichael number since

@ =1 mod 561

for all ged(a,561) = 1.
o

If the prime factors of a Carmichael numbers are all large, there are only few bases
a for which Fermat’s test detects that the number is actually composite. For this
reason, in practice the more powerful Miller—Rabin test is often used to generate
RSA primes.

Miller-Rabin Primality Test

In contrast to Fermat’s test, the Miller—Rabin test does not have any composite num-
bers for which a large number of base elements a yield the statement “prime”. The
test is based on the following theorem:

Theorem 7.6.1 Given the decomposition of an odd prime candi-
date p
p—1=2"

where r is odd. If we can find an integer a such that
a # 1 mod p and a? Z p—1mod p

forall j={0,1,...,.u—1}, then p is composite. Otherwise, it is
probably a prime.

‘We can turn this into an efficient primality test.
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Miller-Rabin Primality Test
Input: prime candidate p with p — 1 = 2“r and security parameter s

Output: statement “p is composite” or “p is likely prime”
Algorithm:

1 FORi=1TOs

choose random a € {2,3,...,p—2}
1.2 z=a" mod p
1.3 IFz#landz# p— 1

1.4 FOR j=1TOu—1
z=z> mod p
IFz=1
RETURN (“p is composite™)
1.5 IFz#p—1

RETURN (“p is composite™)
2 RETURN (“p is likely prime”)

Step 1.2 is computed by using the square-and-multiply algorithm. The IF statement
in Step 1.3 tests the theorem for the case j = 0. The FOR loop 1.4 and the IF state-
ment 1.5 test the right-hand side of the theorem for the values j=1,...,u—1.

It can still happen that a composite number p gives the incorrect statement
“prime”. However, the likelihood of this rapidly decreases as we run the test with
several different random base elements a. The number of runs is given by the secu-
rity parameter s in the Miller—Rabin test. Table 7.2 shows how many different values
a must be chosen in order to have a probability of less than 278 that a composite is
incorrectly detected as a prime.

Table 7.2 Number of runs within the Miller—Rabin primality test for an error probability of less
than 280

Bit lengths of j|Security parameter s
250 11
300 9
400 6
500 5
600 3

Example 7.9. Miller—Rabin Test
Let 5 =91. Write p as p— 1 = 2! -45. We select a security parameter of s = 4. Now,
choose s times a random value a:

1. Leta = 12: z = 12* =90 mod 91, hence, p is likely prime.
2. Leta=17:z=17% =90 mod 91, hence, p is likely prime.
3. Let a = 38: z = 38% =90 mod 91, hence, j is likely prime.
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4. Leta = 39: 7 =39* =78 mod 91, hence, j is composite.

Since the numbers 12, 17 and 38 give incorrect statements for the prime candidate
p =91, they are called “liars for 91”.
o

7.7 RSA in Practice: Padding

What we described so far is the so-called “schoolbook RSA” system which has sev-
eral weaknesses. In practice RSA has to be used with a padding scheme. Padding
schemes are extremely important, and if not implemented properly, an RSA imple-
mentation may be insecure. The following properties of schoolbook RSA encryption
are problematic:

m RSA encryption is deterministic, i.e., for a specific key, a particular plaintext
is always mapped to a particular ciphertext. An attacker can derive statistical
properties of the plaintext from the ciphertext. Furthermore, given some pairs
of plaintext—ciphertext, partial information can be derived from new ciphertexts
which are encrypted with the same key.

m Plaintext values x =0, x = 1, or x = —1 produce ciphertexts equal to 0, 1, or —1.

m Small public exponents e and small plaintexts x might be subject to attacks if
no padding or weak padding is used. However, there is no known attack against
small public exponents such as e = 3.

RSA has another undesirable property, namely that it is malleable. A crypto
scheme is said to be malleable if the attacker Oscar is capable of transforming the ci-
phertext into another ciphertext which leads to a known transformation of the plain-
text. Note that the attacker does not decrypt the ciphertext but is merely capable of
manipulating the plaintext in a predictable manner. This is easily achieved in the
case of RSA if the attacker replaces the ciphertext y by s°y, where s is some integer.
If the receiver decrypts the manipulated ciphertext, he computes:

(s¢y)? = s x4 = sx mod n.

Even though Oscar is not able to decrypt the ciphertext, such targeted manipulations
can still do harm. For instance, if x were an amount of money which is to be trans-
ferred or the value of a contract, by choosing s = 2 Oscar could exactly double the
amount in a way that goes undetected by the receiver.

A possible solution to all these problems is the use of padding, which em-
beds a random structure into the plaintext before encryption and avoids the above
mentioned problems. Modern techniques such as Optimal Asymmetric Encryption
Padding (OAEP) for padding RSA messages are specified and standardized in Pub-
lic Key Cryptography Standard #1 (PKCS #1).

Let M be the message to be padded, let k be the length of the modulus 7 in
bytes, let |H| be the length of the hash function output in bytes and let |[M| be the
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length of the message in bytes. A hash function computes a message digest of fixed
length (e.g., 160 or 256 bit) for every input. More about hash functions is found
in Chap. 11. Furthermore, let L be an optional label associated with the message
(otherwise, L is an empty string as default). According to the most recent version
PKCS#1 (v2.1), padding a message within the RSA encryption scheme is done in
the following way:

1. Generate a string PS of length k — |M| — 2|H| — 2 of zeroed bytes. The length of
PS may be zero.

2. Concatenate Hash(L), PS, a single byte with hexadecimal value 0x01, and the
message M to form a data block DB of length k — |H| — 1 bytes as

DB = Hash(L)||PS||0x01||M.

»

Generate a random byte string seed of length |H]|.

Let dbMask = MGF (seed,k— |H|— 1), where MGF is the mask generation func-
tion. In practice, a hash function such as SHA-1 is often used as MFG.

Let maskedDB = DB ® dbMask.

Let seedMask = MGF (maskedDB, |H|).

Let maskedSeed = seed & seedMask.

Concatenate a single byte with hexadecimal value 0x00, maskedSeed and
maskedDB to form an encoded message EM of length k bytes as

B

el AN

EM = 0x00||maskedSeed||masked DB.

Figure 7.3 shows the structure of a padded message M.

seed Hash(L) | PS | 0x01 | M
0x00 5> ®
seedMask dbMask
1 1H k-IHI-1

k

Fig. 7.3 RSA encryption of a message M with Optimal Asymmetric Encryption Padding (OAEP)

On the decryption side, the structure of the decrypted message has to be verified.
For instance, if there is no byte with hexadecimal value 0x01 to separate PS from
M, a decryption error occurred. In any case, returning a decryption error to the user
(or a potential attacker!) should not reveal any information about the plaintext.
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7.8 Attacks

There have been numerous attacks proposed against RSA since it was invented in
1977. None of the attacks are serious, and moreover, they typically exploit weak-
nesses in the way RSA is implemented or used rather than the RSA algorithm itself.
There are three general attack families against RSA:

1. Protocol attacks
2. Mathematical attacks
3. Side-channel attacks

We comment on each of them in the following.

Protocol Attacks

Protocol attacks exploit weaknesses in the way RSA is being used. There have been
several protocol attacks over the years. Among the better known ones are the attacks
that exploit the malleability of RSA, which was introduced in the previous section.
Many of them can be avoided by using padding. Modern security standards describe
exactly how RSA should be used, and if one follows those guidelines, protocol
attacks should not be possible.

Mathematical Attacks

The best mathematical cryptanalytical method we know is factoring the modulus.
An attacker, Oscar, knows the modulus 7, the public key e and the ciphertext y. His
goal is to compute the private key d which has the property that ¢ -d = mod @ (n).
It seems that he could simply apply the extended Euclidean algorithm and compute
d. However, he does not know the value of @(n). At this point factoring comes in:
the best way to obtain this value is to decompose 7 into its primes p and g. If Oscar
can do this, the attack succeeds in three steps:

@(n) = (p—1)(¢g—1)
d™! = e mod ®(n)

X Eyd mod n.

In order to prevent this attack, the modulus must be sufficiently large. This is the
sole reason why moduli of 1024 or more bit are needed for a RSA. The proposal of
the RSA scheme in 1977 sparked much interest in the old problem of integer fac-
torization. In fact, the major progress that has been made in factorization in the last
three decades would most likely not have happened if it weren’t for RSA. Table 7.3
shows a summary of the RSA factoring records that have occurred since the begin-
ning of the 1990s. These advances have been possible mainly due to improvements
in factoring algorithms, and to a lesser extent due to improved computer technology.
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Even though factoring has become easier than the RSA designers had assumed 30
years ago, factoring RSA moduli beyond a certain size still is out of reach.

Table 7.3 Summary of RSA factoring records since 1991

Decimal digits Bit length Date
100 330 April 1991
110 364 April 1992
120 397 June 1993
129 426 April 1994
140 463  February 1999
155 512 August 1999
200 664 May 2005

Of historical interest is the 129-digit modulus which was published in a column
by Martin Gardner in Scientific American in 1997. It was estimated that the best
factoring algorithms of that time would take 40 trillion (4 - 10'3) years. However,
factoring methods improved considerably, particularly during the 1980s and 1990s,
and it took in fact less than 30 years.

Which exact length the RSA modulus should have is the topic of much discus-
sion. Until recently, many RSA applications used a bit length of 1024 bits as default.
Today it is believed that it might be possible to factor 1024-bit numbers within a pe-
riod of about 10-15 years, and intelligence organizations might be capable of doing
it possibly even earlier. Hence, it is recommended to choose RSA parameters in the
range of 2048—4096 bits for long-term security.

Side-Channel Attacks

A third and entirely different family of attacks are side-channel attacks. They exploit
information about the private key which is leaked through physical channels such as
the power consumption or the timing behavior. In order to observe such channels, an
attacker must typically have direct access to the RSA implementation, e.g., in a cell
phone or a smart card. Even though side-channel attacks are a large and active field
of research in modern cryptography and beyond the scope of this book, we show
one particularly impressive such attack against RSA in the following.

Figure 7.4 shows the power trace of an RSA implementation on a microproces-
sor. More precisely, it shows the electric current drawn by the processor over time.
Our goal is to extract the private key d which is used during the RSA decryption.
We clearly see intervals of high activity between short periods of less activity. Since
the main computational load of RSA is the squarings and multiplication during the
exponentiation, we conclude that the high-activity intervals correspond to those two
operations. If we look more closely at the power trace, we see that there are high
activity intervals which are short and others which are longer. In fact, the longer
ones appear to be about twice as long. This behavior is explained by the square-
and-multiply algorithm. If an exponent bit has the value 0, only a squaring is per-
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formed. If an exponent bit has the value 1, a squaring together with a multiplication
is computed. But this timing behavior reveals immediately the key: A long period
of activity corresponds to the bit value 1 of the secret key, and a short period to a
key bit with value 0. As shown in the figure, by simply looking at the power trace
we can identify the secret exponent. Thus we can learn the following 12 bits of the
private key by looking at the trace:

operations: S SM SM SSM S S SM SM SM S SM
privatekey: 0 1 1 0 1 00 1 1 1 0 1

Obviously, in real-life we can also find all 1024 or 2048 bits of a full private key.
During the short periods with low activity, the square-and-multiply algorithm scans
and processes the exponent bits before it triggers the next squaring or squaring-and-
multiplication sequence.

Power Trace

S

Power

Time

Fig. 7.4 The power trace of an RSA implementation

This specific attack is classified as simple power analysis or SPA. There are sev-
eral countermeasures available to prevent the attack. A simple one is to execute a
multiplication with dummy variables after a squaring that corresponds to an expo-
nent bit 0. This results in a power profile (and a run time) which is independent
of the exponent. However, countermeasures against more advanced side-channel at-
tacks are not as straightforward.
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7.9 Implementation in Software and Hardware

RSA is the prime example (almost literally) for a public-key algorithm that is very
computationally intensive. Hence, the implementation of public-key algorithms is
much more crucial than that of symmetric ciphers like 3DES and AES, which are
significantly faster. In order to get an appreciation for the computational load, we
develop a rough estimate for the number of integer multiplications needed for an
RSA operation.

We assume a 2048-bit RSA modulus. For decryption we need on average 3072
squaring and multiplications, each of which involves 2048-bit operands. Let’s as-
sume a 32-bit CPU so that each operand is represented by 2048 /32 = 64 registers.
A single long-number multiplication requires now 64> = 4096 integer multiplica-
tions since we have to multiply every register of the first operand with every register
of the second operand. In addition, we have to modulo reduce each of these multipli-
cations. The best algorithms for doing this also require roughly 64> = 4096 integer
multiplications. Thus, in total, the CPU has to perform about 4096 + 4096 = 8192
integer multiplications for a single long-number multiplication. Since we have 3072
of these, the number of integer multiplications for one decryption is:

#(32-bit mult) = 3072 x 8192 = 25,165,824

Of course, using a smaller modulus results in fewer operations, but given that integer
multiplications are among the most costly operations on current CPUs, it is probably
clear that the computational demand is quite impressive. Note that most other public
key schemes have a similar complexity.

The extremely high computational demand of RSA was, in fact, a serious hin-
drance to its adoption in practice after it had been invented. Doing hundreds of
thousands of integer multiplications was out of question with 1970s-style comput-
ers. The only option for RSA implementations with an acceptable run time was
to realize RSA on special hardware chips until the mid- to late 1980s. Even the
RSA inventors investigated hardware architecture in the early days of the algorithm.
Since then much research has focused on ways to quickly perform modular integer
arithmetic. Given the enormous capabilities of state-of-the-art VLSI chips, an RSA
operation can today be done in the range of 100 ps on high-speed hardware.

Similarly, due to Moore’s Law, RSA implementations in software have become
possible since the late 1980s. Today, a typical decryption operation on a 2 GHz CPU
takes around 10 ms for 2048-bit RSA. Even though this is sufficient for many PC
applications, the throughput is about 100 x 2048 = 204,800 bit/s if one uses RSA
for encryption of large amounts of data. This is quite slow compared to the speed of
many of today’s networks. For this reason RSA and other public-key algorithms are
not used for bulk data encryption. Rather, symmetric algorithms are used that are
often faster by a factor of 1000 or so.
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7.10 Discussion and Further Reading

RSA and Variants The RSA cryptosystem is widely used in practice and is well
standardized in bodies such as PKCS#1 [149]. Over the years several variants have
been proposed. One generalization is to use a modulus which is composed of more
than two primes. Also proposed have been multipower moduli of the form n = p?¢
[162] as well as multifactor ones where n = p g r [45]. In both cases speed-ups by a
factor of approximately 2-3 are possible.

There are also several other crypto schemes which are based on the integer fac-
torization problem. A prominent one is the Rabin scheme [140]. In contrast to RSA,
it can be shown that the Rabin scheme is equivalent to factoring. Thus, it is said
that the cryptosystem is provable secure. Other schemes which rely on the hard-
ness of integer factorization include the probabilistic encryption scheme by Blum—
Goldwasser [28] and the Blum Blum Shub pseudo-random number generator [27].
The Handbook of Applied Cryptography [120] describes all the schemes mentioned
in a coherent form.

Implementation The actual performance of an RSA implementation heavily de-
pends on the efficiency of the arithmetic used. Generally speaking, speed-ups are
possible at two levels. On the higher level, improvements of the square-and-multiply
algorithm are an option. One of the fastest methods is the sliding window exponen-
tiation which gives an improvement of about 25% over the square-and-multiply al-
gorithm. A good compilation of exponentiation methods is given in [120, Chap. 14].
On the lower layer, modular multiplication and squaring with long numbers can be
improved. One set of techniques deals with efficient algorithms for modular reduc-
tion. In practice, Montgomery reduction is the most popular choice; see [41] for a
good treatment of software techniques and [72] for hardware. Several alternatives
to the Montgomery method have also been proposed over the years [123]; [120,
Chap. 14]. Another angle to accelerate long number arithmetic is to apply fast mul-
tiplication methods. Spectral techniques such as the fast Fourier transform (FFT) are
usually not applicable because the operands are still too short, but methods such as
the Karatsuba algorithm [99] are very useful. Reference [17] gives a comprehensive
but fairly mathematical treatment of the area of multiplication algorithms, and [172]
describes the Karatsuba method from a practical viewpoint.

Attacks Breaking RSA analytically has been a subject of intense investigation for
the last 30 years. Especially during the 1980s, major progress in factorization algo-
rithms was made, which was not in small part motivated by RSA. There have been
numerous other attempts to mathematically break RSA, including attacks against
short private exponents. A good survey is given in [32]. More recently, proposals
have been made to build special computers whose sole purpose is to break RSA.
Proposals include an optoelectronic factoring machine [151] and several other ar-
chitectures based on conventional semiconductor technology [152, 79].

Side channel attacks have been systematically studied in academia and industry
since the mid- to late 1990s. RSA, as well as most other symmetric and asymmetric
schemes, are vulnerable against differential power analysis (DPA), which is more
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powerful than the simple power analysis (SPA) shown in this section. On the other
hand, numerous countermeasures against DPA are known. Good references are The
Side Channel Cryptanalysis Lounge [70] and the excellent book on DPA [113].
Related implementation-based attacks are fault injection attacks and timing attacks.
It is important to stress that a cryptosystem can be mathematically very strong but
still be vulnerable to side-channel attacks.

7.11 Lessons Learned

m RSA is the most widely used public-key cryptosystem. In the future, elliptic
curve cryptosystems will probably catch up in popularity.

m RSA is mainly used for key transport (i.e., encryption of keys) and digital signa-
tures.

m The public key e can be a short integer. The private key d needs to have the
full length of the modulus. Hence, encryption can be significantly faster than
decryption.

m RSA relies on the integer factorization problem. Currently, 1024-bit (about 310
decimal digits) numbers cannot be factored. Progress in factorization algorithms
and factorization hardware is hard to predict. It is advisable to use RSA with
a 2048-bit modulus if one needs reasonable long-term security, especially with
respect to extremely well funded attackers.

m “Schoolbook RSA” allows several attacks, and in practice RSA should be used
together with padding.
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Problems

7.1. Let the two primes p = 41 and ¢ = 17 be given as set-up parameters for RSA.

1. Which of the parameters e; = 32,e5 = 49 is a valid RSA exponent? Justify your
choice.

2. Compute the corresponding private key K, = (p,q,d). Use the extended Eu-
clidean algorithm for the inversion and point out every calculation step.

7.2. Computing modular exponentiation efficiently is inevitable for the practicabil-
ity of RSA. Compute the following exponentiations x* mod m applying the square-
and-multiply algorithm:

l.x=2,e=79,m=101
2.x=3,e=197, m= 101

After every iteration step, show the exponent of the intermediate result in binary
notation.

7.3. Encrypt and decrypt by means of the RSA algorithm with the following system
parameters:

l.p=3,g=11,d=7,x=5
2.p=5,g=11,e=3,x=9

Only use a pocket calculator at this stage.

7.4. One major drawback of public-key algorithms is that they are relatively slow.
In Sect. 7.5.1 we learned that an acceleration technique is to use short exponents e.
Now we study short exponents in this problem in more detail.

1. Assume that in an implementation of the RSA cryptosystem one modular squar-
ing takes 75% of the time of a modular multiplication. How much quicker is
one encryption on average if instead of a 2048-bit public key the short exponent
e =219 4 1 is used? Assume that the square-and-multiply algorithm is being used
in both cases.

2. Most short exponents are of the form e = 2" 4 1. Would it be advantageous to
use exponents of the form 2" — 17 Justify your answer.

3. Compute the exponentiation x° mod 29 of x = 5 with both variants of e from
above for n = 4. Use the square-and-multiply algorithm and show each step of
your computation.

7.5. In practice the short exponents e = 3, 17 and 2'® + 1 are widely used.

1. Why can’t we use these three short exponents as values for the exponent d in
applications where we want to accelerate decryption?
2. Suggest a minimum bit length for the exponent d and explain your answer.

7.6. Verify the RSA with CRT example in the chapter by computing y? = 15'9 mod
143 using the square-and-multiply algorithm.
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7.7. An RSA encryption scheme has the set-up parameters p = 31 and g = 37. The
public key is e = 17.

1. Decrypt the ciphertext y = 2 using the CRT.
2. Verify your result by encrypting the plaintext without using the CRT.

7.8. Popular RSA modulus sizes are 1024, 2048, 3072 and 4092 bit.

1. How many random odd integers do we have to test on average until we expect to
find one that is a prime?
2. Derive a simple formula for any arbitrary RSA modulus size.

7.9. One of the most attractive applications of public-key algorithms is the estab-
lishment of a secure session key for a private-key algorithm such as AES over an
insecure channel.

Assume Bob has a pair of public/private keys for the RSA cryptosystem. Develop
a simple protocol using RSA which allows the two parties Alice and Bob to agree
on a shared secret key. Who determines the key in this protocol, Alice, Bob, or both?

7.10. In practice, it is sometimes desirable that both communication parties influ-
ence the selection of the session key. For instance, this prevents the other party from
choosing a key which is a weak key for a symmetric algorithm. Many block ciphers
such as DES and IDEA have weak keys. Messages encrypted with weak keys can
be recovered relatively easily from the ciphertext.

Develop a protocol similar to the one above in which both parties influence the
key. Assume that both Alice and Bob have a pair of public/private keys for the RSA
cryptosystem. Please note that there are several valid approaches to this problem.
Show just one.

7.11. In this exercise, you are asked to attack an RSA encrypted message. Imagine
being the attacker: You obtain the ciphertext y = 1141 by eavesdropping on a certain
connection. The public key is k., = (n,e) = (2623,2111).

1. Consider the encryption formula. All variables except the plaintext x are known.
Why can’t you simply solve the equation for x?

2. In order to determine the private key d, you have to calculate d = ¢! mod ®(n).
There is an efficient expression for calculating @(n). Can we use this formula
here?

3. Calculate the plaintext x by computing the private key d through factoring n =
p - q. Does this approach remain suitable for numbers with a length of 1024 bit
or more?

7.12. We now show how an attack with chosen ciphertext can be used to break an
RSA encryption.

1. Show that the multiplicative property holds for RSA, i.e., show that the product
of two ciphertexts is equal to the encryption of the product of the two respective
plaintexts.
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2. This property can under certain circumstances lead to an attack. Assume that
Bob first receives an encrypted message y; from Alice which Oscar obtains by
eavesdropping. At a later point in time, we assume that Oscar can send an inno-
cent looking ciphertext y, to Bob, and that Oscar can obtain the decryption of y,.
In practice this could, for instance, happen if Oscar manages to hack into Bob’s
system such that he can get access to decrypted plaintext for a limited period of
time.

7.13. In this exercise, we illustrate the problem of using nonprobabilistic cryptosys-
tems, such as schoolbook RSA, imprudently. Nonprobabilistic means that the same
sequence of plaintext letters maps to the same ciphertext. This allows traffic analysis
(i.e., to draw some conclusion about the cleartext by merely observing the cipher-
text) and in some cases even to the total break of the cryptoystem. The latter holds
especially if the number of possible plaintexts is small. Suppose the following situ-
ation:

Alice wants to send a message to Bob encrypted with his public key pair (,e).
Therefore, she decides to use the ASCII table to assign a number to each character
(Space — 32, ! — 33, ...,A — 65, B— 66, ..., ~— 126) and to encrypt them
separately.

1. Oscar eavesdrops on the transferred ciphertext. Describe how he can successfully
decrypt the message by exploiting the nonprobabilistic property of RSA.
2. Bob’s RSA public key is (n,e) = (3763, 11). Decrypt the ciphertext

y = 2514, 1125,333,3696,2514,2929,3368,2514

with the attack proposed in 1. For simplification, assume that Alice only chose
capital letters A—Z during the encryption.

3. Is the attack still possible if we use the OAEP padding? Exactly explain your
answer.

7.14. The modulus of RSA has been enlarged over the years in order to thwart im-
proved attacks. As one would assume, public-key algorithms become slower as the
modulus length increases. We study the relation between modulus length and perfor-
mance in this problem. The performance of RSA, and of almost any other public-key
algorithm, is dependent on how fast modulo exponentiation with large numbers can
be performed.

1. Assume that one modulo multiplication or squaring with k-bit numbers takes
c-k* clock cycles, where ¢ is a constant. How much slower is RSA encryp-
tion/decryption with 1024 bits compared to RSA with 512 bits on average? Only
consider the encryption/decryption itself with an exponent of full length and the
square-and-multiply algorithm.

2. In practice, the Karatsuba algorithm, which has an asymptotical complexity that
is proportional to k'°223 is often used for long number multiplication in cryptog-
raphy. Assume that this more advanced technique requires ¢’ - k%23 = ¢/ . k!-385
clock cycles for multiplication or squaring where ¢’ is a constant. What is the



Problems 203

ratio between RSA encryption with 1024 bit and RSA with 512 bit if the Karat-
suba algorithm is used in both cases? Again, assume that full-length exponents
are being used.

7.15. (Advanced problem!) There are ways to improve the square-and-multiply al-
gorithm, that is, to reduce the number of operations required. Although the number
of squarings is fixed, the number of multiplications can be reduced. Your task is to
come up with a modified version of the square-and-multiply algorithm which re-
quires fewer multiplications. Give a detailed description of how the new algorithm
works and what the complexity is (number of operations).

Hint: Try to develop a generalization of the square-and-multiply algorithm which
processes more than one bit at a time. The basic idea is to handle k (e.g., k = 3)
exponent bit per iteration rather than one bit in the original square-and-multiply
algorithm.

7.16. Let us now investigate side-channel attacks against RSA. In a simple imple-
mentation of RSA without any countermeasures against side-channel leakage, the
analysis of the current consumption of the microcontroller in the decryption part
directly yields the private exponent. Figure 7.5 shows the power consumption of an
implementation of the square-and-multiply algorithm. If the microcontroller com-
putes a squaring or a multiplication, the power consumption increases. Due to the
small intervals in between the loops, every iteration can be identified. Furthermore,
for each round we can identify whether a single squaring (short duration) or a squar-
ing followed by a multiplication (long duration) is being computed.

1. Identify the respective rounds in the figure and mark these with S for squaring or
SM for squaring and multiplication.

2. Assume the square-and-multiply algorithm has been implemented such that the
exponent is being scanned from left to right. Furthermore, assume that the start-
ing values have been initialized. What is the private exponent d?

3. This key belongs to the RSA setup with the primes p = 67 and ¢ = 103 and
e = 257. Verify your result. (Note that in practice an attacker wouldn’t know the
values of p and q.)
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Fig. 7.5 Power consumption of an RSA decryption



Chapter 8

Public-Key Cryptosystems Based on the Discrete
Logarithm Problem

In the previous chapter we learned about the RSA public-key scheme. As we have
seen, RSA is based on the hardness of factoring large integers. The integer factoriza-
tion problem is said to be the one-way function of RSA. As we saw earlier, roughly
speaking a function is one-way if it is computationally easy to compute the func-
tion f(x) = y, but computationally infeasible to invert the function: f~!(y) = x. The
question is whether we can find other one-way functions for building asymmetric
crypto schemes. It turns out that most non-RSA public-key algorithms with practical
relevance are based on another one-way function, the discrete logarithm problem.
In this chapter you will learn:

m The Diffie-Hellman key exchange

m Cyclic groups which are important for a deeper understanding of Diffie-Hellman
key exchange

m The discrete logarithm problem, which is of fundamental importance for many
practical public-key algorithms

m Encryption using the Elgamal scheme

The security of many cryptographic schemes relies on the computational in-
tractability of finding solutions to the Discrete Logarithm Problem (DLP). Well-
known examples of such schemes are the Diffie—Hellman key exchange and the
Elgamal encryption scheme, both of which will be introduced in this chapter. Also,
the Elgamal digital signature scheme (cf. Section 8.5.1) and the digital signature
algorithm (cf. Section 10.2) are based on the DLP, as are cryptosystems based on
elliptic curves (Section 9.3).

We start with the basic Diffie—Hellman protocol, which is surprisingly simple
and powerful. The discrete logarithm problem is defined in what are called cyclic
groups. The concept of this algebraic structure is introduced in Section 8.2. A formal
definition of the DLP as well as some illustrating examples are provided, followed
by a brief description of attack algorithms for the DLP. With this knowledge we will
revisit the Diffie-Hellman protocol and more formally talk about its security. We
will then develop a method for encrypting data using the DLP that is known as the
Elgamal cryptosystem.

C. Paar, J. Pelzl, Understanding Cryptography, 205
DOI 10.1007/978-3-642-04101-3_8, (© Springer-Verlag Berlin Heidelberg 2010
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8.1 Diffie—-Hellman Key Exchange

The Diffie—Hellman key exchange (DHKE), proposed by Whitfield Diffie and Mar-
tin Hellman in 1976 [58], was the first asymmetric scheme published in the open
literature. The two inventors were also influenced by the work of Ralph Merkle.
It provides a practical solution to the key distribution problem, i.e., it enables two
parties to derive a common secret key by communicating over an insecure chan-
nel!. The DHKE is a very impressive application of the discrete logarithm problem
that we’ll study in the subsequent sections. This fundamental key agreement tech-
nique is implemented in many open and commercial cryptographic protocols like
Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol Security
(IPSec).The basic idea behind the DHKE is that exponentiation in Z%, p prime, is a
one-way function and that exponentiation is commutative, i.e.,

k= (o) = (o) mod p

The value k = (a*)” = (&¥)* mod p is the joint secret which can be used as the
session key between the two parties.

Let us now consider how the Diffie-Hellman key exchange protocol over Zj,
works. In this protocol we have two parties, Alice and Bob, who would like to
establish a shared secret key. There is possibly a trusted third party that properly
chooses the public parameters which are needed for the key exchange. However, it is
also possible that Alice or Bob generate the public parameters. Strictly speaking, the
DHKE consists of two protocols, the set-up protocol and the main protocol, which
performs the actual key exchange. The set-up protocol consists of the following
steps:

Diffie—-Hellman Set-up

1. Choose a large prime p.
2. Choose an integer o € {2,3,...,p—2}.
3. Publish p and a.

These two values are sometimes referred to as domain parameters. If Alice and
Bob both know the public parameters p and o computed in the set-up phase, they
can generate a joint secret key k with the following key-exchange protocol:

! The channel needs to be authenticated, but that will be discussed later in this book.
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Diffie—-Hellman Key Exchange

Alice Bob
choose a = kpya €1{2,....,p—2} choose b = ky.p € {2,....p—2}
compute A = kpp 4 = 0 mod p compute B = kpupp = o mod p
kpub A=A
kpub B=B
kprA _ pa kprB _ 4p
kag = kpub.B =B mod p kag = kpub‘A =A" mod p

Here is the proof that this surprisingly simple protocol is correct, i.e., that Alice
and Bob in fact compute the same session key kyp.

Proof. Alice computes
B = (o’)" = a® mod p

while Bob computes
AP = (0")? = 0’ mod p

and thus Alice and Bob both share the session key k4 = ac®> mod p. The key can
now be used to establish a secure communication between Alice and Bob, e.g., by
using kap as key for a symmetric algorithm like AES or 3DES. 0O

We’ll look now at a simple example with small numbers.

Example 8.1. The Diffie—Hellman domain parameters are p = 29 and o = 2. The
protocol proceeds as follows:

Alice Bob
choose a = kp4 =5 choose b = kp,p =12
A = kpup.a =2’ =3 mod 29 B = kpup,p =212 =7 mod 29

kag =B*=7° =16 mod 29 kap = AP =312 = 16 mod 29

As one can see, both parties compute the value k4p = 16, which can be used as a
joint secret, e.g., as a session key for symmetric encryption.
o

The computational aspects of the DHKE are quite similar to those of RSA. Dur-
ing the set-up phase, we generate p using the probabilistic prime-finding algorithms
discussed in Section 7.6. As shown in Table 6.1, p should have a similar length as
the RSA modulus n, i.e., 1024 or beyond, in order to provide strong security. The
integer & needs to have a special property: It should be a primitive element, a topic
which we discuss in the following sections. The session key k4p that is being com-
puted in the protocol has the same bit length as p. If we want to use it as a symmetric
key for algorithms such as AES, we can simply take the 128 most significant bits.
Alternatively, a hash function is sometimes applied to k45 and the output is then
used as a symmetric key.
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During the actual protocol, we first have to choose the private keys a and b.
They should stem from a true random generator in order to prevent an attacker from
guessing them. For computing the public keys A and B as well as for computing the
session key, both parties can make use of the square-and-multiply algorithm. The
public keys are typically precomputed. The main computation that needs to be done
for a key exchange is thus the exponentiation for the session key. In general, since
the bit lengths and the computations of RSA and the DHKE are very similar, they
require a similar effort. However, the trick of using short public exponents that was
shown in Section 7.5 is not applicable to the DHKE.

What we showed so far is the classic Diffie—-Hellman key exchange protocol in
the group Z%, where p is a prime. The protocol can be generalized, in particular to
groups of elliptic curves. This gives rise to elliptic curve cryptography, which has
become a very popular asymmetric scheme in practice. In order to better understand
elliptic curves and schemes such as Elgamal encryption, which are also closely re-
lated to the DHKE, we introduce the discrete logarithm problem in the following
sections. This problem is the mathematical basis for the DHKE. After we have in-
troduced the discrete logarithm problem, we will revisit the DHKE and discuss its
security.

8.2 Some Algebra

This section introduces some fundamentals of abstract algebra, in particular the no-
tion of groups, subgroups, finite groups and cyclic groups, which are essential for
understanding discrete logarithm public-key algorithms.

8.2.1 Groups

For convenience, we restate here the definition of groups which was introduced in
the Chapter 4:
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Definition 8.2.1 Group
A group is a set of elements G together with an operation o which
combines two elements of G. A group has the following properties.

1. The group operation o is closed. That is, for all a,b, € G, it holds
thataob=c € G.

2. The group operation is associative. That is, ac (boc) = (aob)oc
forall a,b,c € G.

3. There is an element 1 € G, called the neutral element (or identity
element), such thataol =1loa=ajforall a € G.

4. For each a € G there exists an element a~' € G, called the in-
verse of a, such that acal=aloa=1.

5. A group G is abelian (or commutative) if, furthermore, aob =
boaforalla,b e G.

Note that in cryptography we use both multiplicative groups, i.e., the operation
“o” denotes multiplication, and additive groups where “o” denotes addition. The
latter notation is used for elliptic curves as we’ll see later.

Example 8.2. To illustrate the definition of groups we consider the following exam-
ples.

m (Z,4+) is a group, i.e., the set of integers Z = {...,—2,—1,0,1,2,...} together
with the usual addition forms an abelian group, where e = 0 is the identity ele-
ment and —a is the inverse of an element a € Z.

m (Z without 0,-)isnota group, i.e., the set of integers Z (without the element
0) and the usual multiplication does not form a group since there exists no inverse
a~! for an element a € Z with the exception of the elements —1 and 1.

m (C,-)isa group, i.e., the set of complex numbers u+ iv with u,v € R and i = — 1
together with the complex multiplication defined by

(u1 +iv1) . (ug + in) = (u1u2 —V1V2) + i(u1v2 +v1u2)

forms an abelian group. The identity element of this group is e = 1, and the
inverse a~! of an element @ = u+iv € C is given by a~! = (u—i)/(u® +v?).

However, all of these groups do not play a significant role in cryptography be-
cause we need groups with a finite number of elements. Let us now consider the
group Z;, which is very important for many cryptographic schemes such as DHKE,
Elgamal encryption, digital signature algorithm and many others.
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Theorem 8.2.1

The set Z;, which consists of all integers i =0,1,...,n—1 for which
gcd(i,n) = 1 forms an abelian group under multiplication modulo
n. The identity element is e = 1.

Let us verify the validity of the theorem by considering the following example:

Example 8.3. If we choose n =9, Z;: consists of the elements {1,2,4,5,7,8}.

Table 8.1 Multiplication table for Zg

><mod9|124578
124578
248157
487215
512784
751842
875421

=R BV B N S

By computing the multiplication table for Zg, depicted in Table 8.1, we can eas-
ily check most conditions from Definition 8.2.1. Condition 1 (closure) is satisfied
since the table only consists of integers which are elements of Zg. For this group
Co