

Cryptography ECE5632 - Spring 2025

Lecture 1B

Dr. Farah Raad

The First British Higher Education in Egypt

The same start and the FT SQ

MSA UNIVERSITY جامعة أكتوبر للعلوم الحديثة والآداب

Introduction

ECE5632 - Spring 2025-Dr. Farah Raad

- First associations might be e-mail encryption, secure website access, smart cards for banking applications or code-breaking during World War II (famous attack against the German Enigma encryption machine).
- Seems closely linked to modern electronic communication. However, cryptography is a rather old business back to about 2000 B.C., "secret" hieroglyphics were used in ancient Egypt.
- Has been used in many cultures that developed written language,(Letter-based encryption schemes) secret writing in ancient Greece, namely the Scytale of Sparta, or the famous Caesar Cipher in ancient Rome.

Scytale of Sparta

ECE5632 - Spring 2025-Dr. Farah Raad

Classification of the Field of Cryptology

> The most general term is cryptology and not cryptography.

- Cryptography is the science of secret writing with the goal of hiding the meaning of a message.
- > Cryptanalysis is the science and sometimes art of breaking cryptosystems.
- Because cryptanalysis is the only way to assure that a cryptosystem is secure, it is an integral part of cryptology.

Classification of the Field of Cryptology

Symmetric Algorithms (ciphers)

- Are two parties, encryption and decryption methods for which they share a secret key.
- Widely used since ancient times until 1976.
- Symmetric ciphers are still in widespread use, especially for data encryption and integrity check of messages.
- Asymmetric (or Public-Key) Algorithms (ciphers)
- In 1976 an entirely different type of cipher was introduced by Whitfield Diffie, Martin Hellman and Ralph Merkle.
- In public-key cryptography, a user possesses a secret key as in symmetric cryptography but also a public key.
- can be used for applications such as digital signatures and key establishment, and also for classical data encryption.
- > Hybrid Schemes: The majority of today's protocols are hybrid schemes, i.e., the use both
 - Symmetric ciphers (e.g., for encryption and message authentication)
 - Asymmetric ciphers (e.g., for key exchange and digital signature).

Classification of the Field of Cryptology

- Cryptographic Protocols Roughly speaking, crypto protocols deal with the application of cryptographic algorithms.
- Symmetric and asymmetric algorithms can be viewed as building blocks with which applications such as secure Internet communication can be realized.
- The Transport Layer Security (TLS) scheme, which is used in every Web browser, is an example of a cryptographic protocol.
- In the majority of cryptographic applications in practical systems, symmetric and asymmetric algorithms (and often also hash functions) are all used together (hybrid schemes).
- \succ The reason for using both families of algorithms is that each has specific strengths and weaknesses.

Symmetric Cryptography

> Alternative names: **private-key**, **single-key** or **secret-key** cryptography

<u>Problem Statement:</u>

Alice and Bob would like to communicate via an unsecure channel (e.g., WLAN or Internet).
 A malicious third party Oscar (the bad guy) has channel access but should not be able to understand the communication.

This type of unauthorized listening is called eavesdropping.

Symmetric Cryptography

Solution:

Encryption with symmetric cipher.

Oscar obtains only ciphertext y, that looks like random bits.

- x is the. **Plaintext** or *cleartext*
- y is the **ciphertext**
- *K* is the **key**
- Set of all keys {*K*1, *K*2, ...,*Kn*} is the **key space**

Symmetric Cryptography

Encryption equation

Decryption equation

Encryption and decryption are inverse operations if the same key K is used on both sides:

$$d_{K}(y) = d_{K}(e_{K}(x)) = x$$

Important: The key must be transmitted via a **secure channel** between Alice (Transmitter) and Bob (Receiver).

• The secure channel can be realized, e.g., by manually installing the key for the Wi-Fi Protected Access (WPA) protocol or a human courier.

• However, the system is only secure if an attacker does not learn the key K!

⇒ The problem of secure communication is reduced to secure transmission and storage of the key

Simple Symmetric Encryption:

> The Substitution Cipher

- It is one of the simplest methods for encrypting text, the substitution (= replacement) cipher.
- Historical cipher
- Encrypts letters rather than bits (like all ciphers until after WW II)
- We will use the substitution cipher for learning some important facts about key lengths and about different ways of attacking ciphers (brute-force vs. analytical attacks).

Example : Idea: replace each plaintext letter by a fixed other letter

	Ciphertext		Plaintext
For instance, the pop group ABBA	k	\rightarrow	A
would be encrypted as kddk.	d	\rightarrow	В
	W	\rightarrow	С

- Substitution table is chosen completely randomly so that an attacker is not able to guess it.
- The substitution table is the key of this cryptosystem.

Cryptanalysis

> Why do we need Cryptanalysis?

- There is no *mathematical proof of security* for any practical cipher
- The only way to have assurance that a cipher is secure is to try to break it (and fail) !

Cryptanalysis

What do you think about **Breaking Cryptosystems ??**

ECE5632 - Spring 2025-Dr. Farah Raad

Kerckhoffs' Principle

A cryptosystem should be secure even if the attacker knows all details about the system, with the exception of the secret key.

Security by Obscurity

In order to achieve Kerckhoff's Principle in practice:

Only use widely known ciphers that have been cryptanalyzed for several years by good cryptographers! (*Understanding Cryptography* only treats such ciphers)

Classification of Cryptanalysis

14

1. Classical Cryptanalysis

Brute-Force Attack

• which treat the encryption algorithm as a black box and test all possible keys

➤ Mathematical Analysis

- which exploit the internal structure of the encryption method
- It is understood as the science of recovering the plaintext x from the ciphertext y, or, alternatively, recovering the key k from the ciphertext y.

2. Implementation Attacks

- It can be used to obtain a secret key, by measuring the electrical power consumption of a processor which operates on the secret key. by applying signal processing techniques.
- Also, electromagnetic radiation or the runtime behavior of algorithms can give information about the secret key.
- Note also that implementation attacks are mostly relevant against cryptosystems to which an attacker has physical access, such as smart cards.
- In most Internet-based attacks against remote systems, implementation attacks are usually not a concern.

3. Social Engineering Attacks

E.g., trick a user into giving up her password

Ways of breaking the cipher

ECE5632 - Spring 2025-Dr. Farah Raad

Attacks against the Substitution Cipher

First Attack: Exhaustive Key Search (Brute-Force Attack)

- Treats the cipher as a black box
- Requires (at least) 1 plaintext-ciphertext pair (x0, y0)
- Check all possible keys until condition is fulfilled.

Based on a simple concept:

The attacker has the ciphertext from eavesdropping on the channel and happens to have a short piece of plaintext. e.g., the header of a file that was encrypted. Basic Exhaustive Key Search or Brute-force At-tack

Let (x, y) denote the pair of plaintext and ciphertext, and let $K = \{k_1, ..., k_K\}$ be the key space of all possible keys k_i . A brute-force attack now checks for every $k_i \in K$ if

$$d_{k_i}(y) \stackrel{?}{=} x.$$

If the equality holds, a possible correct key is found; if not, proceed with the next key.

✓ In practice, a brute-force attack can be more complicated because incorrect keys can give false positive results.

How can determine the key space of the substitution cipher ?

When choosing the replacement for the first letter A, we randomly choose one letter from the 26 letters of the alphabet. The replacement for the next alphabet letter B was randomly chosen from the remaining 25 letters, etc.

Thus there exist the following number of different substitution tables:

key space of the substitution cipher = $26.25...3.2.1 = 26! \approx 2^{88}$

Search through 2⁸⁸ keys is completely infeasible with personal computers!

Key length in bit	Key space	Security life time (assuming brute-force as best possible attack)
64	2 ⁶⁴	Short term (few days or less)
128	2 ¹²⁸	Long-term (several decades in the absence of quantum computers)
256	2 ²⁵⁶	Long-term (also resistant against quantum computers – note that QC do not exist at the moment and might never exist)

Important: An adversary only needs to succeed with **one** attack. Thus, a long key space does not help if other attacks (e.g., social engineering) are possible..

ECE5632 - Spring 2025-Dr. Farah Raad

Attacks against the Substitution Cipher

Second Attack: Letter Frequency Analysis

1. Determine the frequency of every ciphertext letter.

Table 1.1 Relative letter frequencies of the English language

2. Looking at pairs or triples, or quadruples, and so on of ciphertext symbols. (the letter Q is almost always followed by a U).

3. If word separators (blanks) have been found (which is only sometimes the case), one can often detect frequent short words such as THE, AND, etc.

✤ Moreover: the frequency of plaintext letters is preserved in the ciphertext.

21

Example

> Let's retun to our example and identify the most frequent letter:

iq ifcc vqqr fb rdq vfllcq na rdq cfjwhwz hr bnnb hcc hwwhbsqvqbre hwq vhlq

> We replace the ciphertext letter q by E and obtain:

iE ifcc vEEr fb rdE vfllcE na rdE cfjwhwz hr bnnb hcc hwwhbsEvEbre hwE vhlE

By further guessing based on the frequency of the remaining letters we obtain the plaintext:

WE WILL MEET IN THE MIDDLE OF THE LIBRARY AT NOON ALL ARRANGEMENTS ARE MADE

Important lesson

Even though the substitution cipher has a sufficiently large key space of approximate 2⁸⁸, it can easily be defeated with analytical methods.
 This is an excellent example that an encryption scheme must withstand all types of attacks.

Thank You!

See You next Lectures!! Any Question?

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt Tel:+202383711146 Fax:+20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline:16672 Website: www.msa.edu.eg

