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Short Introduction to Modular Arithmetic

Why do we need to study modular arithmetic?
» Extremely important for asymmetric cryptography (RSA, elliptic curves etc.)

» Some historical ciphers can be elegantly described with modular arithmetic (Caesar
and affine cipher).
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Short Introduction to Modular Arithmetic

» Generally speaking, most cryptosystems are based on sets of numbers that are
1. discrete (sets with integers are particularly useful)
2. finite (i.e., if we only compute with a finely many numbers)

Seems too abstract? --- Let‘s look at a finite set with discrete numbers we are quite familiar with: a clock.
Consider the hours on a clock. If you keep adding one hour, you obtain:

1h,2h,3h,...,11h,12h,1h,2h,3h,...,11h,12h,1h,2h,3h,... 0 = N\
of VR
v Even though we keep adding one hour, we never leave the set. 8\?1?#5/
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Short Introduction to Modular Arithmetic

» We develop now an arithmetic system which allows us to compute in finite sets of integers
» ltis crucial to have an operation which keeps the numbers within limits®, i.e., after addition and
multiplication they should never leave the set .

Let’s look at a general way of dealing with arithmetic in such finite sets.
Example : We consider the set of the nine numbers: {0,1,2,3,4,5,6,7,8}

We can do regular arithmetic as long as the results are smaller than 9. For instance:
2%x3=6 & 4+4 =8

But what about 8+4?

Since 8+4 = 12, and 12/9 has a remainder of 3, we write: 8+4 =3 mod 9
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Modulus Operation

Definition: Modulus Operation

Let a, r, m be integers and m > 0. We write

asrmodm xmodn-=r
amodm-=r

if (a-r) is divisible by m. >>> m/(a-r)= integer

* “m”is called the modulus
 “r"is called the remainder

** ( =) is mean the reading of equation be ( a mod m equal r)
Examples for modular reduction.

°*leta=12and m=9: 12=3 mod 9
* Leta= 34 and m=9: 34 =7 mod 9
°* Leta=-7 and m=9:; -7 =2mod 9

v (you should check whether the condition m divides (r-a) holds in each of the 3 cases)
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Modulus Operation

Computation of the Remainder

a=qgm-+r forO<sr<m
Since;, a-I=0g-m (m divides a-r)
r=a-qg-m

we can now write: @ =1 mod m
v' Note that r €{0,1,2,...,m-1}.

Example: Leta=42 and m = 9.

Then 42 =4*9+6 and therefore 42 =6 mod 9.
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Properties of Modular Arithmetic (1)

» The Remainder Is Not Unique

It is somewhat surprising that for every given modulus m and number a, there are (infinitely) many
valid remainders.

r=atm
Example: We want to reduce 12 modulo 9. Here are several results which are correct

according to the definition:

«12 =3 mod 9 —» 3is a valid remainder since 9/ (3-12) >>>> 12-9=3
12 =21 mod 9 — 21 is a valid remainder since 9/ (21-12) >>>> 12+9=21
12 =-6 mod 9 — -6 is a valid remainder since 9/ (-6-12) >>>> 12-9=3-9=-6

> “X|y” means “x divides y”. There is a system behind this behavior. The set of numbers

{...,-24,-15,-6,3,12,15,24,...}

» There are eight other equivalence classes for the modulus 9 (equivalence class)
{..,-27,-18,-9, 0, 9,18,27,...}
{...,-26,-17,-8, 1, 10,19,28,...}

{..,-19,-10,-1, 8, 17,26,35,...}
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Properties of Modular Arithmetic (2)

> Which remainder do we choose?

By convention, we usually agree on the smallest positive integer r as remainder. This integer
can be computed as
quotient f remainder |
a=Ggm+r  where 0<r<m-1
* Example:a=12and m=9

12=1x9+3 — =3

v" Remark: This is just a convention. Algorithmically we are free to choose any other valid
remainder to compute our crypto functions.
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Properties of Modular Arithmetic (3)

» How do we perform modular division?
First, note that rather than performing a division, we prefer to multiply by the inverse.

b/asbx a1 modm
The inverse a~1 of a number a is defined such that:
a Xxal=1modm

Ex: Whatis5/7 mod 9 ?

The inverse of 7 mod 9is4 since 7 x4 =28 =1 mod 9, hence:
5/7=5x4=20=2mod9
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Properties of Modular Arithmetic (4)

» Modular reduction can be performed at any point during a calculation

Let’s look first at an example. We want to compute 38mod 7 (note that exponentiation is extremely
important in public-key cryptography).

1. Approach: Exponentiation followed by modular reduction
38=6561 =2 mod 7

v Note that we have the intermediate result 6561 even though we know that the final result can’t be larger
than 7.

2. Approach: Exponentiation with intermediate modular reduction
38=3%x3* =81x81

At this point we reduce the intermediate results 81 modulo 7:

33=81x81=4x4mod?7
4x4=16=2mod 7

General rule: For most algorithms it is advantageous to reduce

intermediate results as soon as possible.
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Integer RINgs

» An Algebraic View on Modulo Arithmetic: The Ring Zm (1)

We can view modular arithmetic in terms of sets and operations in the set. By doing arithmetic modulo m
we obtain the integer ring Zm .with the following properties:

* Closure: We can add and multiply any two numbers and the result is always in the ring.

* Addition and multiplication are associative, i.e., for all a,b,c £Z
atb+c)=(at+tb)+tc
ax(bxc)=(axb)xc

and addition is commutative:a+b=b +a

* The distributive law holds: ax(b+c) = {axb)+(axc) for all a,b,c £Z,,

* There is the neutral element 0 with respect to addition, i.e.,foralla cZ
at0=amodm

* Foralla £Z,, there is always an additive inverse element —a such that
a+(-a)=0modm

* There is the neutral element 1 with respect to multiplication, i.e., for alla £ Z,

axi=amodm
*  The multiplicative inverse a-’

axa'=1modm
12

exists only for some, but not for all, elements in Z,.




Integer RINgs

» An Algebraic View on Modulo Arithmetic: The Ring Zm (2)

Roughly speaking, a ring is a structure in which we can always add, subtract and

multiply, but we can only divide by certain elements (namely by those for which a
multiplicative inverse exists).

Ex: We consider the ring Z5 = {0,1,2,3,4,5,6,7,8}
The elements 0, 3, and 6 do not have inverses since they are not coprime to 9.
The inverses of the other elements 1, 2, 4, 5, 7, and 8 are:
1""=1mod 9 27"=5mod 9 47=7 mod 9
5T"=2mod 9 7"=4mod 9 8'=8mod 9
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Integer RINgs

» Notes
1. Mathematical operation m >> (+,—, *, /,exp)
XmYmodm=r
| XmodmmYmodm]|modm=r
Example: 7+8mod4=[7mod4+8mod4]mod4=[3+0]mod4=3

2.1fa<m [Jr=a Not need for Computation
Example: 3=rmod8 [ r=3

3.—-a=rmodm alis—ve [l r=-a+m
Example: -3 =rmod 10 r=-3+10=7

4. a=r mod a m=a 1 r=0

Example: 10 =r mod 10 r=0
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More Historical Ciphers

» Two historical ciphers to introduce modular arithmetic with integers.

» A very popular special case of the substitution cipher is the Caesar cipher and Affine
Cipher.
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Shift (or Caesar) Cipher

» Ancient cipher, allegedly used by Julius Caesar to communicate with his army.
» Replaces each plaintext letter by another one. It is simply shifts the letters in the alphabet
by a constant number of steps.

Letk, x, ye{0,1, ..., 25}
* Encryption: y=e,x) =x+kmod 26

*  Decryption: x=d,(x) = y-kmod 26

» Replacement rule is very simple: Take letter that follows after k positions in the alphabet
Needs mappina from letters — numbers:

A, B C D E F G H I J K L M

0 1 2 3 4 2 6 7 8 9 |10 11 | 12

N]J]O|P|[Q|]R]|S|T|lU|VIW]X]|Y]|Z

13|14 15|16 (17|18 |19 |20 | 21 | 22 | 23 | 24 | 25
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Shift (or Caesar) Cipher

Example Let the key be k = 17, and the plaintext is:

ATTACK =Xx1.X2.....X = 0,19,19,0,2,10.

The ciphertext i1s then computed as

Vi V..., ve = 17,10,10,17.19,1 = rkkrtb

13114 1516 [ 17 |18 |19 |20 21 | 22 | 23 | 24

A B | C | D E F |1 G| H | J K L M
0 1 2 3 4 2 6 7 8 9 |10 | 11 | 12
N1 O Pl1Q | R | S T Ul vVIiW] X]Y]<Z

25
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Is the shift cipher secure?

No! several attacks are possible, including:
* Exhaustive key search (key space is only 26!)

* Letter frequency analysis, similar to attack against substitution cipher
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Affine Cipher

» Extension of the shift cipher: rather than just adding the key to the plaintext, we also multiply by the
key
* We use for this a key consisting of two parts: k = (a, b)

Letk, x,ye{0,1, ..., 25}
* Encryption: y=e,x)=ax+bmod 26

* Decryption: x=d(x)=a'(y—-b) mod 26

The decryption is easily derived from the encryption function:
a - x+b =y mod 26
a-x=(y-b)mod 26
Xx=a~1-(y-b)mod 26
a xa ! =1 mod 26
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Affine Cipher

Example Letthe key be k = (a.b) = (9.13), and the plaintext be
ATTACK = Xxy,X2,...,X =0,19,19,0,2, 10.
The inverse a~' of a exists and is given by a~! = 3. The ciphertext is computed as

V1.V2,....¥¢ = 13.2.2.13,5.25 = nccnfz

Letk, x, ye {0,1, ..., 25}
* Encryption: y=e,x) =ax+bmod 26

* Decryption: x=d(x)=a’'(y-b) mod 26 A B C D = F G

H | J K L M
0 1 2 3 4 2 6 [ 8 9 110 ) 11| 12
Nl O Pl1Q | R | S T Ul viwl]XxX]|]Y | Z
25

13|14 1516 |17 |18 |19 |20 21 | 22 | 23 | 24
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Is the affine cipher secure?

No! The key space is only a bit larger than in the case
of the shift cipher:

key space = (#values for a)x(#values for b)
= 12x26 = 312

» Again, several attacks are possible, including:
« Exhaustive key search and letter frequency analysis, similar to the attack
against the substitution cipher
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