
SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

>>> type(5)

int

>>> type(3.0)

float

6.0001 LECTURE 1 25

TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

6.0001 LECTURE 1 26

OPERATORS ON ints and floats
 i+j  the sum

 i-j  the difference

 i*j  the product

 i/j  division

 i%j  the remainder when i is divided by j

 i**j i to the power of j

6.0001 LECTURE 1 29

if both are ints, result is int
if either or both are floats, result is float

result is float

STRINGS
 letters, special characters, spaces, digits

 enclose in quotation marks or single quotes
hi = "hello there"

 concatenate strings
name = "ana"

greet = hi + name

greeting = hi + " " + name

 do some operations on a string as defined in Python docs
silly = hi + " " + name * 3

6.0001 LECTURE 2 4

INPUT/OUTPUT: print
 used to output stuff to console

 keyword is print

x = 1

print(x)

x_str = str(x)

print("my fav num is", x, ".", "x =", x)

print("my fav num is " + x_str + ". " + "x = " + x_str)

6.0001 LECTURE 2 5

INPUT/OUTPUT: input("")
 prints whatever is in the quotes

 user types in something and hits enter

 binds that value to a variable

text = input("Type anything... ")

print(5*text)

 input gives you a string so must cast if working
with numbers

num = int(input("Type a number... "))

print(5*num)

6.0001 LECTURE 2 6

COMPARISON OPERATORS ON
int, float, string

 i and j are variable names

 comparisons below evaluate to a Boolean

i > j

i >= j

i < j

i <= j

i == j equality test, True if i is the same as j

i != j inequality test, True if i not the same as j

6.0001 LECTURE 2 7

LOGIC OPERATORS ON bools
 a and b are variable names (with Boolean values)

not a  True if a is False
False if a is True

a and b  True if both are True

a or b  True if either or both are True

6.0001 LECTURE 2 8

A B A and B A or B

True True True True

True False False True

False True False True

False False False False

COMPARISON EXAMPLE
pset_time = 15

sleep_time = 8

print(sleep_time > pset_time)

derive = True

drink = False

both = drink and derive

print(both)

6.0001 LECTURE 2 9

CONTROL FLOW - BRANCHING
if <condition>:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

elif <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

 <condition> has a value True or False

 evaluate expressions in that block if <condition> is True

6.0001 LECTURE 2 11

INDENTATION
matters in Python

 how you denote blocks of code
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller")

else:

print("y is smaller")

print("thanks!")

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

print("x is smaller")

print("y is smaller")

6.0001 LECTURE 2 12

CONTROL FLOW:
while LOOPS
while <condition>:

<expression>

<expression>

...

 <condition> evaluates to a Boolean

 if <condition> is True, do all the steps inside the
while code block

 check <condition> again

 repeat until <condition> is False

6.0001 LECTURE 2 16

while LOOP EXAMPLE
You are in the Lost Forest.



Go left or right?

PROGRAM:

n = input("You're in the Lost Forest. Go left or right? ")

while n == "right":

n = input("You're in the Lost Forest. Go left or right? ")

print("You got out of the Lost Forest!")

6.0001 LECTURE 2 17

CONTROL FLOW:
while and for LOOPS
 iterate through numbers in a sequence

more complicated with while loop

n = 0

while n < 5:

print(n)

n = n+1

shortcut with for loop

for n in range(5):

print(n)

6.0001 LECTURE 2 18

CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>

<expression>

...

 each time through the loop, <variable> takes a value

 first time, <variable> starts at the smallest value

 next time, <variable> gets the prev value + 1

 etc.

6.0001 LECTURE 2 19

range(start,stop,step)
 default values are start = 0 and step = 1 and optional

 loop until value is stop - 1

mysum = 0

for i in range(7, 10):

mysum += i

print(mysum)

mysum = 0

for i in range(5, 11, 2):

mysum += i

print(mysum)

6.0001 LECTURE 2 20

break STATEMENT
 immediately exits whatever loop it is in

 skips remaining expressions in code block

 exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.0001 LECTURE 2 21

break STATEMENT
mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

mysum += 1

print(mysum)

 what happens in this program?

mysum += i

if mysum == 5:

break

6.0001 LECTURE 2 22

for VS while LOOPS
for loops

 know number of
iterations

 can end early via
break

 uses a counter

 can rewrite a for loop
using a while loop

while loops

 unbounded number of
iterations

 can end early via break

 can use a counter but
must initialize before loop
and increment it inside loop

may not be able to
rewrite a while loop using
a for loop

6.0001 LECTURE 2 23

STRINGS
 think of as a sequence of case sensitive characters

 can compare strings with ==, >, < etc.

 len() is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s)  evaluates to 3

6.0001 LECTURE 3 4

STRINGS
 square brackets used to perform indexing into a string
to get the value at a certain index/position
s = "abc"

s[0]  evaluates to "a"
s[1]  evaluates to "b"
s[2]  evaluates to "c"
s[3]  trying to index out of bounds, error
s[-1]  evaluates to "c"
s[-2]  evaluates to "b"
s[-3]  evaluates to "a"

6.0001 LECTURE 3 5

index: 0 1 2  indexing always starts at 0

index: -3 -2 -1  last element always at index -1

STRINGS
 can slice strings using [start:stop:step]

 if give two numbers, [start:stop], step=1 by default

 you can also omit numbers and leave just colons

6.0001 LECTURE 3 6

s = "abcdefgh"

s[3:6]  evaluates to "def", same as s[3:6:1]

s[3:6:2]  evaluates to "df"

s[::]  evaluates to "abcdefgh", same as s[0:len(s):1]

s[::-1]  evaluates to "hgfedbca", same as s[-1:-(len(s)+1):-1]

s[4:1:-2] evaluates to "ec"

STRINGS
 strings are “immutable” – cannot be modified

s = "hello"

s[0] = 'y'  gives an error

s = 'y'+s[1:len(s)]  is allowed,
s bound to new object

6.0001 LECTURE 3 7

s

"hello"

"yello"

for LOOPS RECAP
 for loops have a loop variable that iterates over a set of
values

for var in range(4):  var iterates over values 0,1,2,3

<expressions>  expressions inside loop executed
with each value for var

for var in range(4,6):  var iterates over values 4,5
<expressions>

 range is a way to iterate over numbers, but a for loop
variable can iterate over any set of values, not just numbers!

6.0001 LECTURE 3 8

STRINGS AND LOOPS
 these two code snippets do the same thing

 bottom one is more “pythonic”

s = "abcdefgh"

for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':

print("There is an i or u")

for char in s:

if char == 'i' or char == 'u':

print("There is an i or u")

6.0001 LECTURE 3 9

CODE EXAMPLE:
ROBOT CHEERLEADERS
an_letters = "aefhilmnorsxAEFHILMNORSX"

word = input("I will cheer for you! Enter a word: ")

times = int(input("Enthusiasm level (1-10): "))

i = 0

while i < len(word):

char = word[i]

if char in an_letters:

print("Give me an " + char + "! " + char)

else:

print("Give me a " + char + "! " + char)

i += 1

print("What does that spell?")

for i in range(times):

print(word, "!!!")

6.0001 LECTURE 3 10

for char in word:

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

is_even(3)

HOW TO WRITE and
CALL/INVOKE A FUNCTION

6.0001 LECTURE 4 12

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

IN THE FUNCTION BODY

6.0001 LECTURE 4 13

ONE WARNING IF NO
return STATEMENT
def is_even(i):

"""

Input: i, a positive int

Does not return anything

"""

i%2 == 0

 Python returns the value None, if no return given

 represents the absence of a value

6.0001 LECTURE 4 19

TUPLES
 an ordered sequence of elements, can mix element types

 cannot change element values, immutable

 represented with parentheses

te = ()

t = (2,"mit",3)

t[0]  evaluates to 2

(2,"mit",3) + (5,6)  evaluates to (2,"mit",3,5,6)

t[1:2]  slice tuple, evaluates to ("mit",)

t[1:3]  slice tuple, evaluates to ("mit",3)

len(t)  evaluates to 3

t[1] = 4  gives error, can’t modify object
6.0001 LECTURE 5 4

TUPLES
 conveniently used to swap variable values

x = y temp = x (x, y) = (y, x)

y = x x = y

y = temp

 used to return more than one value from a function

def quotient_and_remainder(x, y):

q = x // y

r = x % y

return (q, r)

(quot, rem) = quotient_and_remainder(4,5)

6.0001 LECTURE 5 5

LISTS
 ordered sequence of information, accessible by index

 a list is denoted by square brackets, []

 a list contains elements
• usually homogeneous (ie, all integers)

• can contain mixed types (not common)

 list elements can be changed so a list is mutable

6.0001 LECTURE 5 7

INDICES AND ORDERING
a_list = []

L = [2, 'a', 4, [1,2]]

len(L)  evaluates to 4

L[0]  evaluates to 2

L[2]+1  evaluates to 5

L[3]  evaluates to [1,2], another list!

L[4]  gives an error

i = 2

L[i-1]  evaluates to ‘a’ since L[1]='a' above

6.0001 LECTURE 5 8

CHANGING ELEMENTS
 lists are mutable!

 assigning to an element at an index changes the value

L = [2, 1, 3]

L[1] = 5

 L is now [2, 5, 3], note this is the same object L

6.0001 LECTURE 5 9

L

[2,1,3][2,5,3]

ITERATING OVER A LIST
 compute the sum of elements of a list

 common pattern, iterate over list elements

 notice
• list elements are indexed 0 to len(L)-1

• range(n) goes from 0 to n-1

6.0001 LECTURE 5 10

total = 0

for i in range(len(L)):

total += L[i]

print total

total = 0

for i in L:

total += i

print total

OPERATIONS ON LISTS - ADD
 add elements to end of list with L.append(element)

 mutates the list!
L = [2,1,3]

L.append(5)  L is now [2,1,3,5]

 what is the dot?
• lists are Python objects, everything in Python is an object

• objects have data

• objects have methods and functions

• access this information by object_name.do_something()

• will learn more about these later
6.0001 LECTURE 5 11

OPERATIONS ON LISTS - ADD
 to combine lists together use concatenation, + operator,
to give you a new list

 mutate list with L.extend(some_list)

L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2  L3 is [2,1,3,4,5,6]
L1, L2 unchanged

L1.extend([0,6])  mutated L1 to [2,1,3,0,6]

6.0001 LECTURE 5 12

OPERATIONS ON LISTS -
REMOVE
 delete element at a specific index with del(L[index])

 remove element at end of list with L.pop(), returns the
removed element

 remove a specific element with L.remove(element)
• looks for the element and removes it

• if element occurs multiple times, removes first occurrence

• if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order

L.remove(2) mutates L = [1,3,6,3,7,0]
L.remove(3) mutates L = [1,6,3,7,0]
del(L[1])  mutates L = [1,3,7,0]
L.pop()  returns 0 and mutates L = [1,3,7]

6.0001 LECTURE 5 13

CONVERT LISTS TO STRINGS
AND BACK
 convert string to list with list(s), returns a list with every
character from s an element in L

 can use s.split(), to split a string on a character parameter,
splits on spaces if called without a parameter

 use ''.join(L) to turn a list of characters into a string, can
give a character in quotes to add char between every element

6.0001 LECTURE 5 14

s = "I<3 cs"  s is a string
list(s)  returns ['I','<','3',' ','c','s']
s.split('<')  returns ['I', '3 cs']
L = ['a','b','c']  L is a list
''.join(L)  returns "abc"
'_'.join(L)  returns "a_b_c"

OTHER LIST OPERATIONS
 sort() and sorted()

 reverse()

 and many more!
https://docs.python.org/3/tutorial/datastructures.html

L=[9,6,0,3]

sorted(L)  returns sorted list, does not mutate L

L.sort()  mutates L=[0,3,6,9]

L.reverse()  mutates L=[9,6,3,0]

6.0001 LECTURE 5 15

https://docs.python.org/3/tutorial/datastructures.html

CLONING A LIST
 create a new list and copy every element using
chill = cool[:]

6.0001 LECTURE 5 20

SORTING LISTS
 calling sort() mutates the list, returns nothing

 calling sorted()
does not mutate
list, must assign
result to a variable

6.0001 LECTURE 5 21

LISTS OF LISTS OF LISTS OF….
 can have nested lists

 side effects still
possible after mutation

6.0001 LECTURE 5 22

MUTATION AND ITERATION
Try this in Python Tutor!

 avoid mutating a list as you are iterating over it
def remove_dups(L1, L2):

for e in L1:

if e in L2:

L1.remove(e)

L1 = [1, 2, 3, 4]

L2 = [1, 2, 5, 6]

remove_dups(L1, L2)

 L1 is [2,3,4] not [3,4] Why?
• Python uses an internal counter to keep track of index it is in the loop

• mutating changes the list length but Python doesn’t update the counter

• loop never sees element 2

6.0001 LECTURE 5 23

def remove_dups(L1, L2):

L1_copy = L1[:]

for e in L1_copy:

if e in L2:

L1.remove(e)

