SCALAR OBJECTS

" int —representintegers, ex. 5

= float —represent real numbers, ex. 3.27

" bool -represent Boolean values True and False
" NoneType -special and has one value, None

" can use type () to see the type of an object

W’a
o ap
>>>| type (9) /)@"wl/;% Wrige
int v ey o
>>> type (3.0) /)/}t/.afé‘/;o
Og S

float N, e

6.0001 LECTURE 1

TYPE CONVERSIONS (CAST)

= can convert object of one type to another

= float (3) convertsinteger 3 tofloat 3.0

" int (3.9) truncates float 3. 9 to integer 3

OPERATORS ON ints and floats
"1+ -2 thesum —

. , . . if both are ints, result is int
"1 9 the difference if either or both are floats, result is float

= 1*j - the product

=i/9 -2 division — = result s float

" 1%3 -2> the remainder when 1 is divided by 7

= i **3 = 1 to the power of]

6.0001 LECTURE 1

STRINGS

= |etters, special characters, spaces, digits

= enclose in quotation marks or single quotes
hi = "hello there"

" concatenate strings

name = "ana"
greet = hi + name
greeting = hi + " " + name

= do some operations on a string as defined in Python docs
silly = hi + " " 4+ name * 3

6.0001 LECTURE 2 4

INPUT/OUTPUT: print

= used to output stuff to console

= keyword is print

x =1

print (x)

X str = str(x)

print ("my fav num 1is", x, ".", "x =", x)

print ("my fav num is " + x str + ". " + "x =" + X str)

6.0001 LECTURE 2 5

INPUT/OQUTPUT: input ("")

= prints whatever is in the quotes

= user types in something and hits enter

= binds that value to a variable
text = input ("Type anything... ")

print (5*text)

" input gives you a string so must cast if working
with numbers

num = 1nt (input ("Type a number... "))

print (5*num)

6.0001 LECTURE 2 6

COI\/IPAR\SON OPERATORS ON
int, float, string

" i and j are variable names

= comparisons below evaluate to a Boolean

i
i

i

== Jj - equality test, True if 1 is the same as

= J -2 inequality test, True if i not the same as 7

LOGIC OPERATORS ON bools

= 3 and b are variable names (with Boolean values)

not a - True ifaisFalse
Falseifais True

a and b 2 True if bothare True

a or b 2> Trueifeither or both are True

A B ____lAandB__AorB

True True True True
True False False True
False True False True
False False False False

6.0001 LECTURE 2 8

COMPARISON EXAMPLE

pset time = 15

sleep time = 8

print (sleep time > pset time)

derive = True
drink = False
both = drink and derive

print (both)

CONTROL FLOW - BRANCHING

1f <condition>: 1f <condition>:
<expression> <expression>
<expression> <expression>

elif <condition>:

1f <condition>: <expression>
<expression> <expression>
<expression>
else:
else: <expression>
<expression> <expression>
<expression>

" <condition> hasavalue Trueor False

" evaluate expressions in that block if <condition> is True

6.0001 LECTURE 2

INDENTATION

" matters in Python

= how you denote blocks of code

x = float (input ("Enter a number for x: "))
y = float (input ("Enter a number for y: "))
1f x == vy:

print ("x and y are equal")
= 0:
print ("therefore, x / y 1is", x/V)

1if vy

elif x < y:

print ("x 1s smaller")
else:

print ("y 1s smaller")
print ("thanks!™)

6.0001 LECTURE 2

CONTROL FLOW:
while LOOPS

while <condition>:

<expression>
<expression>

" <condition> evaluates to a Boolean

" if <condition> is True, do all the steps inside the
while code block

" check <condition> again

" repeat until <condition> isFalse

6.0001 LECTURE 2

while LOOP EXAMPLE

You are in the Lost Forest.
Kk Kk Kk kkhkkkk*k%k

Rl i A b b b b b b b b ¢

©

Rl d A b b b b b b b b ¢
Rl i A i b b b b b b g ¢

Go left or right?

PROGRAM:
n = input ("You're in the Lost Forest. Go left or right? ")
while n == "right":

n = input ("You're in the Lost Forest. Go left or right? ")

print ("You got out of the Lost Forest!")

6.0001 LECTURE 2

CONTROL FLOW:
while and for LOOPS

" jterate through numbers in a sequence

more complicated with while loop

n =0

while n < b5:
print (n)
n = n+l

shortcut with for loop
for n in range(5):
print (n)

CONTROL FLOW: for LOOPS

for <variable> in range (<some num>) :
<expression>
<expression>

= each time through the loop, <variable> takes a value
= first time, <variable> starts at the smallest value
" next time, <variable> getsthe prevvalue +1

" etc.

6.0001 LECTURE 2

range (start, stop, step)

" default values are start = Oand step = 1 and optional

" [oop until valueis stop - 1

mysum = 0

for 1 in range (7, 10):
mysum += 1

print (mysum)

mysum = 0

for 1 in range (5, 11, 2):
mysum += 1

print (mysum)

6.0001 LECTURE 2

break STATEMENT

" immediately exits whatever loop itis in

= skips remaining expressions in code block

= exits only innermost loop!

while <condition 1>:
while <condition 2>:
<expression a>
break
<expression b>

<expression c>

6.0001 LECTURE 2

break STATEMENT

mysum = 0

for 1 in range (5, 11, 2):
mysum += 1
1f mysum == 5:
break
mysum += 1

print (mysum)

= what happens in this program?

for VS

while LOOPS

for loops

= know number of
iterations

= can end early via
break

" uses a counter

= can rewrite a for loop
usingawhile loop

while loops

= unbounded number of
iterations

" can end early via break

" can use a counter but
must initialize before loop
and increment it inside loop

" may not be able to
rewrite a while loop using
a for loop

6.0001 LECTURE 2

STRINGS

= think of as a sequence of case sensitive characters

= can compare strings with ==, >, < etc.

" len () is afunction used to retrieve the length of the
string in the parentheses

s = "abc"

len (s) =2 evaluatesto3

6.0001 LECTURE 3 4

STRINGS

= square brackets used to perform indexing into a string
to get the value at a certain index/position

s = "abc"

index: 0 1 2 < indexing always starts at0

index: -3-2-1 < last element always at index -1

s[0° - evaluates to "a"

s[1] - evaluates to "b"

s[2] - evaluates to "c"

s[3] - trying to mdex out of bounds, error
s[-1] -2 evaluatesto"c"

s[-2] -2 evaluatesto "b"

s[-3] -2 evaluatesto"a"

6.0001 LECTURE 3 5

STRINGS

= can slice strings using [start:stop:step]

= if give two numbers, [start:stop], step=1 by default

" you cah also omit numbers and leave just colons o
N\\’a& S\.(\‘ \
s = "abcdefgh" Q7§ 89°7 0
\’\\)((\«\6(\ ((,O
s[3:06] - evaluatesto "def",sameas s[3:6:1] CZ\)"«\\\O
s[3:6:2] - evaluatesto "df"
s[::] - evaluates to "abcdefgh",sameass[0:len(s) : 1]
s[::-1] -2 evaluatesto "hgfedbca",sameas s[-1:-(len(s)+1):-1]

s[4:1:-2]- evaluatesto "ec"

6.0001 LECTURE 3 6

STRINGS

= strings are “immutable” — cannot be modified

s = "hello"
s[0] = "y —> gives an error
s = 'y'+s[l:1len(s)] - is allowed,

s bound to new object

XN
—— =0

6.0001 LECTURE 3 7

for LOOPS RECAP

= for loops have a loop variable that iterates over a set of

values
for var 1in range (4) : - var iterates over values 0,1,2,3
<expressions> — expressions inside loop executed

with each value for var

for var in range (4, 6): -2 var iterates over values 4,5
<expressions>

" range is a way to iterate over numbers, but a for loop
variable can iterate over any set of values, not just numbers!

6.0001 LECTURE 3 8

STRINGS AND LOOPS

= these two code snippets do the same thing

" bottom one is more “pythonic”
s = "abcdefgh"
for index in range(len(s)):
1f s[index] == 'i' or s[index] == 'u':

print ("There 1s an 1 or u")

for char in s:
if char == '"1' or char == 'u':

print ("There 1s an 1 or u")

6.0001 LECTURE 3 9

CODE EXAMPLE:
ROBOT CHEERLEADERS

an letters = "aefhilmnorsxAEFHILMNORSX"
word = input ("I will cheer for you! Enter a word: ")
times = int (input ("Enthusiasm level (1-10): "))
i =0
while i < len (word) : for char in word: J
char = word[i]
if char in an letters:
print ("Give me an " + char + "! " + char)
else:
print ("Give me a " + char + "! " + char)
i +=1

print ("What does that spell?")
for 1 in range(times) :
print (word, "!!!")

6.0001 LECTURE 3

HOW -

'O WRITE and

CALL/INVOKE A FUNCTION

\! XS
WO ((\e e\.e 'y O
N NG Q&&Odwé« G2
. . (O
defllis even|| i]): “o® Q% 0%
_ o) &fﬁ

mwiiw

Input: 1, a positive 1int

Returns True 1f 1 i1s even, otherwise False

mwriw

oo

print ("inside

return 1%2 ==

1s even (3)

is even") “«@
N0 e?®
0 0661 (\3((\6
C .
e \\S S
@q\éﬁg(&ﬂg
XS . A0 O (o
\° C"\O < Q’a
‘\\)(\\ \)ec) %O
J°o

6.0001 LECTURE 4

IN THE FUNCTION BODY

def i1s even(1):
Input: 1, a positive 1int

Returns True 1f 1 i1s even, otherwise False

W (\SO((\Q 35
(\) ((\3(\
print ("inside 1s even") o
return||i%2 == 0 a
Y \!
- Al X
No(d (e(:c-’\o 606 (e
eN®

6.0001 LECTURE 4

ONE WARNING IF NO
return STATEMENT

def 1s even(1):

ITnput: 1, a posilitive 1nt

Does not return anything

12 == 0

= Python returns the value None, if no return given

= represents the absence of a value

TUPLES

= an ordered sequence of elements, can mix element types

= cannot change element values,/immutable o
o0
. A\
" represented WI:[‘h parentheses “”“\0 S
X 3
«®
te = (2
() ‘\)Q\e
t = (2,"mit", 3)
t[0] — evaluates to 2
(2,"mit",3) + (5,6) - evaluatesto (2, "mit", 3,5, 6)
t[1:2] - slice tuple, evaluatesto ("mit"|,) (0(03
O Q\e X
: " : " ‘(6 ’a"\) ((\8(\
t[1:3] - slice tuple, evaluatesto ("mit",3) et 2 e
o
len (t) - evaluates to 3 R

t[1] = 4 -> gives error, can’t modify object

6.0001 LECTURE 5 4

TUPLES

= conveniently used to swap variable values

X =Yy temp = x (x, v) = (y, X)

X .-

= used to return more than one value from a function

def quotilent and remainder (x, y):

g = X / / Y \(\\'e%ej(.
. \O
r=x %y SV
return (g, r)
(quot, rem) = quotient and remainder (4,5)

6.0001 LECTURE 5 5

LISTS

= ordered sequence of information, accessible by index

= 3 list is denoted by square brackets, []

= 3 list contains elements
* usually homogeneous (ie, all integers)
 can contain mixed types (not common)

= list elements can be changed so a list is mutable

6.0001 LECTURE 5 7

INDICES AND ORDERING

Wb

a list =|[] 6@“
L = [2, 'a', 4, [1,2]]

len (L) =2 evaluatesto 4

L[O] - evaluates to 2

L[2]+1 -> evaluatesto5

L[3] — evaluatesto [1, 2], another list!
L[4] — gives an error

1 = 2

L[i-1] =2 evaluatesto‘@’since.[1]='a' above

CHANGING ELEMENTS

= |ists are mutable!

= 3assigning to an element at an index changes the value
L = [2, 1, 3]
L[1] =5

"Lisnow [2, 5, 31, note thisisthe same object L

—— SN

ITERATING OVER A LIST

= compute the sum of elements of a list _\\@&«\("i‘e
= common pattern, iterate over list elements cz‘:“;e\\%‘(\xs
e
total = 0 total = 0 é§@§N
for 1 1n range(len (L)) : for 1 in|L:
total += L[1] total += 1
print total print total
" notice

 |ist elements areindexed 0 to len (L) -1

* range (n) goesfrom 0 ton-1

6.0001 LECTURE 5

OPERATIONS ON LISTS - ADD

= add elements to end of list with L.. append (element)

= mutates the list!
L = [2,1,3]
L.append (5) - Lisnow [2,1,3,5]

\

= what is the dot?
* lists are Python objects, everything in Python is an object

* objects have data

* objects have methods and functions

* access this information by ocbject name.do something()
* will learn more about these later

6.0001 LECTURE 5

OPERATIONS ON LISTS - ADD

= to combine lists together use concatenation, + operator,
to give you a new list

* mutate list with L. extend (some list)

L1 = [2,1,3]
L2 = [4,5,06]

L3 = L1 + L2 - L3is[2,1,3,4,5,6]
L1, L2 unchanged

Ll.extend ([0, 6]) - mutatedL1to [2,1,3,0,6]

OPERATIONS ON LISTS -
REMOVE

= delete element at a specific index with del (L[index])

" remove element at end of list with .. pop (), returns the
removed element

" remove a specific element with L.. remove (element)
* |ooks for the element and removes it
* if element occurs multiple times, removes first occurrence
 if element not in list, gives an error

e L = [2,1,3,6,3,7,0] # do below in order
Se L.remove (2) 2 mutatesL = [1,3,6,3,7,0]

oP~ (& L.remove (3) > mutatesL = [1,6,3,7,0]
T del(L[1]) > mutatesL = [1,3,7,0]

_ L.pop () = returns 0 and mutates L. = [1, 3, 7]

6.0001 LECTURE 5 13

CONVERT LISTS TO STRINGS
AND BACK

= convert string to list with 1ist (s), returns a list with every
character from s an element in L.

"canuse s.split (), tosplit astring on a character parameter,
splits on spaces if called without a parameter

"use ''.join (L) toturn a list of characters into a string, can
give a character in quotes to add char between every element
s = "I<3 cs" - sisastring
list (s) 2 returns ['I','<','3', " ', 'c',"s"]
s.split ('<") 2 returns ['I', '3 cs']
L= 1['a','b',"c'] - Lisalist
''".Join (L) - returns "abc"

' '.Join(L) -2 returns "a b c"

6.0001 LECTURE 5

OTHER LIST OPERATIONS

"= sort () and sorted ()

" reverse ()

= and many more!
https://docs.python.org/3/tutorial/datastructures.html

L.=[9,6,0,3]

sorted (L) = returns sorted list, does not mutate L
L.sort () - mutates L=[0, 3, 6, 9]
L.reverse () - mutates L=[9, 6, 3, 0]

6.0001 LECTURE 5

https://docs.python.org/3/tutorial/datastructures.html

CLONING A LIST

= create a new list and copy every element using
chill = cool][:]

cool = ['blue', 'green', 'grey'] [:Eiue:: ‘green’, ‘grey’, 'black’]
chill = cool[:] [‘blue’, 'green’, 'grey']

chill.append(black") #
print(chill) Frames Objects
print(cool) .
Global frame list
.,,,"_—_———).- 0 1 2
c@ﬂl "bluE“ 1|green1| 1|grey||

chill
list
0 1 2 3

"blue" 1|green1| 1|gr‘ey|| "bla(:k"

6.0001 LECTURE 5

SORTING LISTS

= calling sort () mutates the list, returns nothing

["orange', 'red', 'vellow']

" calling sorted () ione

['grey', 'green', 'blue']
does not mutate ['blue'J 'gp&eﬂ') 'gpey']
list, must assign
result to a variable Frames Objects
warm = ['red', 'yellow', 'orange'] | Global frame list
_ 0 1 2
SDTtedwarm = warm.sort() warm 'ffrr__ﬁﬂil‘knﬂnge" SR
print(warm) sortedwarm None
print(sortedwarm)
cool '“—*——~Mx\3knst
' T v ' sortedcool 0 1 2
cool = ['grey', 'green', 'blue'] "orey” | "green" | "blue"
sortedcool = sorted(cool)
print(cool) list
print(sortedcool) 0 1 2
1Ib1uell 1Igreen1l .”gr‘e}l'"

6.0001 LECTURE 5

LISTS OF LISTS OF LISTS OF....

= can have nested lists

= side effects still [['vellow', ‘orange’], ['red']]
. . ['red', 'pink"]
possible after mutation (('yeiion:. orange'l, ['red’. 'pink'l]
4
Frames Objects

warm = ['yellow', 'orange’] Global frame 'Et 1

hot = ['red”] warmm "yellow"” | "orange"
brightcolors = [warm] hot

brightcolors.append(hot) brightcolors et
print(brightcolors) 0 1
hot.append('pink") “red “pink”
print(hot)

print(brightcolors)

6.0001 LECTURE 5

MUTATION AND ITERATION
Try this in Python Tutor!

= avoid mutating a list as you are iterating over it

def remove dups(Ll, L2):
for e in L1l:

if e in L2:
x L1l.remove (e)
L1l = [1/ 2/ 3/ 4]
L2 - [1, 2/ 5/ 6]

remove dups (L1, L2)

= .1 is[2,3,4] not [3,4]

def remove dups(Ll, L2):
L1l copy =5 L1[:]
for e in L1 copy:

if e 1in L2:
L1l.remove (e)

Why?

* Python uses an internal counter to keep track of index it is in the loop
* mutating changes the list length but Python doesn’t update the counter

* loop never sees element 2

6.0001 LECTURE 5

