Cryptography [ECE5632]
Lab 1: Random-Key Mono-Alphabetic Classic Substitution Cipher

Ahmed H. Soliman
ahatem@mesa.edu.eg

February 25, 2024

1 Introduction

Mono-alphabetic substitution ciphers encrypt the plaintext by swapping each letter or symbol in the
plaintext by a different symbol as directed by the key[2]. This encryption can be broken using statistical
methods such as frequency analysis, because the characters in every language appear with a particular
probability. Figure 1 shows the frequency of letters in English language.

In this lab, we are going to implement a random-key mono-alphabetic classic substitution cipher. For

0.14
0.12

0.1
0.08
0.06

0.04

0.02

etaoinshrdlcumwfgypbvkjxqz

Figure 1: Characters frequency in English.[1]

simplicity, the cipher will keep spaces, commas, numbers, and special characters unchanged.

2 Lab Objectives
After completing this lab you should be able to:

e Implement a mono-alphabetic classic substitution cipher using Python.

e Analyze the frequency of english letters in ciphertext.

3 Lab Procedure

In the following sub-sections the precise procedure that should be done in order to achieve the afore-
mentioned objectives.

3.1 Key Generation

import random
from string import ascii_lowercase

Key generation

#alphabet = "abcdefghijklmnopqrstuvwxyz"
alphabet = ascii_lowercase

keyList = random.sample(alphabet, len(alphabet))

This is needed for display only (not part of encryption)
key = ’’.join(keyList)

print (alphabet)

print (key)

Map plaintext letter to ciphertext letter
keyMap = dict(zip(list(alphabet), keyList))
print (keyMap)

3.2 Read Plaintext File

The easiest and most safe method of opening a file for read/write in Python is using with statement.
That’s because it ensures closing the file after the read/write operation.

with open(’plaintext.txt’, ’r’) as file:
plaintext = file.read().lower()

3.3 Encryption

ciphertext = "".join(keyMap.get(letter, letter) for letter in plaintext)

Write ciphertext to file
with open(’ciphertext.txt’, ’w’) as file:
file.write(ciphertext)

3.4 Letters Frequency Analysis

In this section, we are going to count the number of occurrences of each letter in the ciphertext. In
order to perform a letter-frequency attack you must refer to the frequency distribution in Fig. 1.

lettersFreq = {}
for ¢ in ascii_lowercase:
lettersFreqlc] = ciphertext.count(c)
e
lettersFreqSorted = dict(
sorted(lettersFreq.items(), key=lambda item: item[1], reverse=True)
)
print (lettersFreqSorted)

4 Self-Practice

e Write Python script that decrypts the ciphertext.txt file that you have encrypted before using
the same key.

e Perform letters frequency analysis attack to a given ciphertext only (you have no idea about the
key).

References

[1] File: English letter frequency (frequency).svg - wikimedia commons, 04 2010.

[2] HassaN, N. A., AND Hwazi, R. Chapter 1 - introduction and historical background. In Data
Hiding Techniques in Windows OS, N. A. Hassan and R. Hijazi, Eds. Syngress, Boston, 2017,
pp. 1-22.

	Introduction
	Lab Objectives
	Lab Procedure
	Key Generation
	Read Plaintext File
	Encryption
	Letters Frequency Analysis

	Self-Practice

