

Cryptography ECE5632 - Spring 2024

Lecture 4A

Dr. Farah Raad

The First British Higher Education in Egypt

The Party Port of the set FT 10

MSA UNIVERSITY جامعة أكتوبر للعلوم الحديثة والآداب

ECE5632 - Spring 2024-Dr. Farah Raad

Relation between DES and SDES

	SDES	DES
Block size	8 bits	64 bits
Key size	10 bits	56 bits
Sub key size	8 bits	48 bit
Function F	Acts on 4 bits	Acts on 32 bits
S-boxes	2	8
S-box size	4 x 4	4 x 16
rounds	2	16

DES Algorithm

- Encrypts blocks of size 64 bits.
- Uses a key of size 56 bits.
 - Symmetric cipher: uses same key for encryption and decryption
 - Uses 16 rounds which all perform the identical operation
 - Different subkey in each round derived from main key

The DES Feistel Network

- Bitwise initial permutation, then 16 rounds
 - 1. Plaintext is split into 32-bit halves L_i and R_i
 - 2. R_i is fed into the function f, the output of which is then XORed with L_i
 - 3. Left and right half are swapped
- Rounds can be expressed as:

 $L_i = R_{i-1},$ $R_i = L_{i-1} \oplus f(R_{i-1}, k_i)$

- L and R swapped again at the end of the cipher, i.e., after round 16 followed by a final permutation
- Advantage: encryption and decryption differ only in key schedule

Initial and Final Permutation

- Bitwise Permutations.
- · Inverse operations.
- Described by tables IP and IP-1.

The f-Function

The Expansion Function E

Add Round Key

The DES S-Boxes

The DES S-Boxes

S-box S_1

,	S_1	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ι	0	14	04	13	01	02	15	11	08	03	10	06	12	05	09	00	07
	1	00	15	07	04	14	02	13	01	10	06	12	11	09	05	03	08
	2	04	01	14	08	13	06	02	11	15	12	09	07	03	10	05	00
	3	15	12	08	02	04	09	01	07	05	11	03	14	10	00	06	13

S-box S_2

S_2	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	15	01	08	14	06	11	03	04	09	07	02	13	12	00	05	10
1	03	13	04	07	15	02	08	14	12	00	01	10	06	09	11	05
2	00	14	07	11	10	04	13	01	05	08	12	06	09	03	02	15
3	13	08	10	01	03	15	04	02	11	06	07	12	00	05	14	09

S-box S_3

S_3	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	10	00	09	14	06	03	15	05	01	13	12	07	11	04	02	08
1	13	07	00	09	03	04	06	10	02	08	05	14	12	11	15	01
2	13	06	04	09	08	15	03	00	11	01	02	12	05	10	14	07
3	01	10	13	00	06	09	08	07	04	15	14	03	11	05	02	12

S-box S_4

S_4	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	07	13	14	03	00	06	09	10	01	02	08	05	11	12	04	15
1	13	08	11	05	06	15	00	03	04	07	02	12	01	10	14	09
2	10	06	09	00	12	11	07	13	15	01	03	14	05	02	08	04
3	03	15	00	06	10	01	13	08	09	04	05	11	12	07	02	14

S-box S_5

	S_5	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	02	12	04	01	07	10	11	06	08	05	03	15	13	00	14	09
	1	14	11	02	12	04	07	13	01	05	00	15	10	03	09	08	06
	2	04	02	01	11	10	13	07	08	15	09	12	05	06	03	00	14
	3	11	08	12	07	01	14	02	13	06	15	00	09	10	04	05	03
S-box S_6																	
	S_6	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	12	01	10	15	09	02	06	08	00	13	03	04	14	07	05	11
	1	10	15	04	02	07	12	09	05	06	01	13	14	00	11	03	08
	2	09	14	15	05	02	08	12	03	07	00	04	10	01	13	11	06
	3	04	03	02	12	09	05	15	10	11	14	01	07	06	00	08	13
S-box S_7																	
	S_7	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	04	11	02	14	15	00	08	13	03	12	09	07	05	10	06	01
	1	13	00	11	07	04	09	01	10	14	03	05	12	02	15	08	06
	2	01	04	11	13	12	03	07	14	10	15	06	08	00	05	09	02
	3	06	11	13	08	01	04	10	07	09	05	00	15	14	02	03	12
S-box S_8																	
	S_8	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	0	13	02	08	04	06	15	11	01	10	09	03	14	05	00	12	07
	1	01	15	13	08	10	03	07	04	12	05	06	11	00	14	09	02
	2	07	11	04	01	09	12	14	02	00	06	10	13	15	03	05	08

02 01 14 07 04 10 08 13 15 12 09 00 03 05 06 11

The Permutation P

4. Permutation P

- Bitwise permutation.
- Introduces diffusion.
- Output bits of one S-Box effect several S-Boxes in next round
- Diffusion by E, S-Boxes and P guarantees that after Round 5 every bit is a function of each key bit and each plaintext bit.

			1	D			
16	7	20	21	29	12	28	17
1	15	23	26	5	18	31	10
2	8	24	14	32	27	3	9
19	13	30	6	22	11	4	25

Key Schedule

- Derives 16 round keys (or *subkeys*) k_i of 48 bits each from the original 56 bit key.
- The input key size of the DES is 64 bit. 56 bit key and 8 bit parity:

P = parity bit

 Parity bits are removed in a first permuted choice PC-1: (note that the bits 8, 16, 24, 32, 40, 48, 56 and 64 are not used at all)

			PC	-1			
57	49	41	33	25	17	9	1
58	50	42	34	26	18	10	2
59	51	43	35	27	19	11	3
60	52	44	36	63	55	47	39
31	23	15	7	62	54	46	38
30	22	14	6	61	53	45	37
29	21	13	5	28	20	12	4

Key Schedule

- Split key into 28-bit halves C₀ and D₀.
- In rounds i = 1, 2, 9, 16, the two halves are each rotated left by one bit.
- In all other rounds where the two halves are each rotated left by two bits.
- In each round i permuted choice PC-2 selects a permuted subset of 48 bits of C_i and D_i as round key k_i, i.e. each k_i is a permutation of k!

			PC	- 2			
14	17	11	24	1	5	3	28
15	6	21	10	23	19	12	4
26	8	16	7	27	20	13	2
41	52	31	37	47	55	30	40
51	45	33	48	44	49	39	56
34	53	46	42	50	36	29	32

Note: The total number of rotations:

 $4 \ge 1 + 12 \ge 28 \implies D_0 = D_{16} \text{ and } C_0 = C_{16}!$

Decryption

Same function as encryption. Only key schedule is reversed.

Avalanche Effect

The avalanche effect is a property of any encryption algorithm such that a small change in either the plaintext or the key produces a significant change in the ciphertext.

Security of DES

> After proposal of DES two major criticisms arose:

- 1. Key space is too small (256 keys)
- 2. S-box design criteria have been kept secret: Are there any hidden analytical attacks (backdoors).

Analytical attacks:

• Differential cryptanalysis and linear cryptanalysis attacks against DES were proposed only in theory.

Brute-force attacks:

- Can be easily broken in practice by brute-force attacks, given a special-purpose key-search machine.
- Examples of actual special-purpose key-search machines include; Deep Crack, and COPACOBANA.

Triple DES (TDES / 3DES)

Triple encryption using DES is often used in practice to extend the effective key length of DES to 112.

> Advantage:

- ✓ choosing k1 = k2 = k3 performs single DES encryption.
- \checkmark No practical attack known today.
- \checkmark Used in many legacy applications, i.e., in banking systems.

 $y = DES_{k_3}(DES_{k_2}(DES_{k_1}(x)))$

Thank You!

See You next Lectures!! Any Question?

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt Tel:+202383711146 Fax:+20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline:16672 Website: www.msa.edu.eg

