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The Advanced Encryption Standard (AES)

» AES Is the most widely used symmetric cipher today.

» Found in every web browser, in banking machines, WiFi routers, etc ..

“ The requirements for all AES candidate submissions were:

» Block cipher with 128-bit block size

» Three supported key lengths: 128, 192 and 256 bit
» Security relative to other submitted algorithms

- Efficiency in software and hardware
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The Advanced Encryption Standard (AES)

How does it work?

All internal operations of AES are based on Finite Fields.
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Finite Fields (Galois Fields)

What's a Field?

Abstract (modern) algebra consists of three basic elements
1. Group
2. Ring
3. Field
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1. Group

Group {G,+, —}: a set of elements, such that the following

axioms are obeyed:

Al. Closure:

If aand b belong to G, thenacebis alsoin G.
A2. Associativity:

acolbec)=(aeb)ecforalla, b, cinG
A3. Ildentity element:

Note:
the generic operator o
denotes either + or —

Thereis an element 0in Gsuchthatae0=0ca=aforallainG

Ad. Inverse element:

For each a in G there is an element -ain Gsuchthatao (-a)=(-a)ea=0

AS5. Commutativity:
aeb=beaforalla,binG

>
But we’re interested in more than just +, — @
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2. Ring

Ring {R,+, —,X}: a set of elements such that the following axioms are obeyed:
A1~AS.

M1. Closure under multiplication:
If aand b belong to R, thenabisalsoinR
M2. Associativity of multiplication:
a(bc) = (ab)c foralla, b, cinR
M3. Distributive laws:
a(b+c)=ab+acforalla,b,cinR
(@a+b)jc=ac+bcforalla,b,cinR
M4. Commutativity of multiplication:
ab=baforalla,binR
M5. Multiplicative identity:
There is an element 1in Rsuchthatal=1a=aforallainR
M6. No zero divisors:
If a, bin R and ab =0, then eithera=0o0rb=0

Y o
Still, we’re interested in more than just 4+, —, ¥ G

A
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3. Field

Field {F,+, —,%,()1}: a set of elements, such that the following axioms are obeyed:
Al1~AS.

M1~M6.

M7. Multiplicative inverse:
For each ain F, except O,
there is an element a in F such that aa'=(at)a=1.

Finally! é&j

Simply, it’s a set of numbers which we can add, subtract, multiply, and invert,
that obey A1~AS5 & M1~M7.

Example: Which of the following are Fields? N
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Finite Fields (Galois Fields)

» In crypto, we almost always need finite sets.

__m: positive integer

-~
-~

Theorem: A finite field only exists if it haipm‘élements.
-

S
p: prime integer

Privvne Nummber
2 3 S5 7 1

» Order or cardinality of the field: number of elements in GF. [ERERE LA CRRE <R L

Examples:

31 37 41 43 47
1) There’s a finite field with 11 elements. GF(11) 53 59 61 67 7

73 79 83 89 97

2) There’s a finite field with 81 elements. GF(81) = GF(3%)

3) There’s a finite field with 256 elements. GF(256) = GF(2%) «——The Galois field

. B o specified in the
4) Is the field with 12 elements a finite field: AES standard.
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Types of Finite Fields

GF(p™)
m=1 m>1
GF(p) GF(p™)

i.e., prime fields i.e., extension fields

Note: GF(2™) is of special
importance in crypto.
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Prime Field Arithmetic

The elements of a prime field GF(p) are the integers {0, 1, ..., p—1}

a) Add, subtract, multiply:
aeb=cmodp

b) Inversion:

Note:
the generic operator = here
denotes either +, —, or X

a € GF(p) ; the inverse a! must satisfya-a'=1modp
a! can be computed using the extended Euclidian Algorithm.
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Extension Field GF(2™) Arithmetic

The elements of GF(2™) are polynomials.

a. X"+ L +ax+a,=Ax) € GF(2™)

m-1

Coefficients a, € GF(2) = {0, 1}

Example:

GF(23) = GF(8)
Alx) =a,x* +a;x+a, =(ay,a;, )
GF(2%)={0, 1, X, x+1,

x2, x2+1, x2+x,

2
X“+x+1}
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Extension Field GF(2™) Arithmetic

a) Add and subtract in GF(2™): Note:
the generic operator o here

C(x) =A(x) o B(x) = X5 cixl,ci = ai + bimod 2 | denotes either +, —

Example: In GF(23), A(x)=x2+x+1,B(x)=x2+1 GF(23)=1{0, 1, x, x+1,
Compute A(x) + B(x) X2, x24+1, x2+X,
A(x) + B(x) = (1+1)x2+x + (1+1) x*+x+1}
=0x2+x+0

Note:
Addition and subtraction in

GF(2™) are the same operations.

=x =A(x)— B(x)
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Extension Field GF(2™) Arithmetic

b) Multiplication in GF(2™):

Example: InGF(23), A(x)=x2+x+1,B(x)=x2+1 GF(23)={0, 1, x, x+1,
Compute A(x) X B(x) x2, x2+1, x%+x,

A(x) X B(x) = (x2+x+ 1)(x2 + 1) X2+x+1}

=x4+ 3+t +x?+x+1

=xt+x3+ (1+1)x2+x+ 1

=x*+x¥*+x+1 Simple..?

So, call this result x* + x> + x + 1 = C’(x)

Solution: Reduce C’(x) modulo a polynomial
that behaves like a prime.

i.e., a polynomial that cannot be factored.
i.e., an irreducible polynomial.

In the next example..
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Extension Field GF(2™) Arithmetic

b) Multiplication in GF(2™):

C(x) = A(x) x B(x) mod P(x) , where P(x) is an irreducible polynomial.

Example:

Given the irreducible polynomial for GF(23) P(x) = x3 +x + 1
Ax)=x>+x+1,B(x)=x2+1
Compute A(x) X B(x) mod P(x)

A(x) X B(x)= x*+x3+x+1=C'(x)

X+ 1

X Hx+1 | x+ 3 +x+1
x* + x2 +x
X3 + x? +1
x3 +x+1
x> +x = A(x) X B(x) mod P(x) = C(x)

15



Extension Field GF(2™) Arithmetic

Where did P(x) come from in the previous example??
Actually, for every finite field GF(2™), there are several irreducible polynomials!

So, for a given finite field (e.g., GF(23)), the computation result depends on P(x).

So, multiplication can’t be done unless the irreducible polynomial is specified.
.

"-u\_\__\-\-\-\-

It must be..

The AES standard specifies the irreducible polynomial:
Px)=x®+x*+x3+x+1

v How to test whether a P(x) is reducible or not? .
https://www.youtube.com/watch?v=pHQ73N3n-ZU What about ()1? @
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Extension Field GF(2™) Arithmetic

c¢) Inversion in GF(2™):

The inverse Al(x) of an element A(x) € GF(2™) must satisfy:
A(x) X A1(x) = 1 mod P(x)

\

N
Extended Euclidian Algorithm.
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Thank You!

See You next Lectures!!
Any Question?
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