

Cryptography ECE5632 - Spring 2024

Lecture 7A

Dr. Farah Raad

The First British Higher Education in Egypt

The same start and the FT SQ

MSA UNIVERSITY جامعة أكتوبر للعلوم الحديثة والآداب

Introduction to Public-Key Cryptography (PKC)

ECE5632 - Spring 2024-Dr. Farah Raad

Symmetric Cryptography Revisited

> Principle of Symmetric-Key encryption:

- The same secret key K is used for encryption and decryption
- Encryption and Decryption are very similar (or even identical) functions

X: plaintext Y: ciphertext K: key

Symmetric Cryptography Revisited

Symmetric Cryptography: Analogy

Safe with a strong lock, only Alice and Bob have a copy of the key

- Alice encrypts : locks message in the safe with her key
- Bob decrypts : uses his copy of the key to open the safe

Principles of Asymmetric Cryptography

Idea behind Asymmetric Cryptography

ECE5632 - Spring 2024-Dr. Farah Raad

Asymmetric (Public-Key) Cryptography

Principle: "Split up" the key

✓ During the key generation, a key pair K_{pub} and K_{pr} is computed

Asymmetric (Public-Key) Cryptography

Asymmetric Cryptography: Analogy

Safe with public lock and private lock:

- Alice deposits (encrypts) a message with the not secret public key Kpub
- Only Bob has the *secret* private key Kpr to retrieve (decrypt) the message

7

Asymmetric (Public-Key) Cryptography

Basic protocol for Public-Key encryption:

\checkmark To study e() and d() .. more Math is needed...

ECE5632 - Spring 2024-Dr. Farah Raad

Essential Number Theory for PKC

ECE5632 - Spring 2024-Dr. Farah Raad

> Compute the greatest common divisor gcd (ro, r1) of two integers ro and r1

gcd is easy for small numbers:

1. factor r_0 and r_1 2. gcd = highest common factor

Example 1: $r_0 = 84$, $r_1 = 30$ $r_0 = 84$ 237 $r_1 = 30$ 235

 \rightarrow The gcd is the product of all common prime factors:

2 · 3 = 6 = *gcd* (30,84)

But: Factoring is complicated (and often infeasible) for large numbers

Such method doesn't work with large numbers, i.e., the case of PKC. We need the EA.

e.g., 3²⁰⁰⁰

Basic idea: $gcd(r_0, r_1) = gcd(r_0 \mod r_1, r_1)$

 $24 = 4 \cdot 6 + 0$

Efficient (faster, less complex)

... we simply reduce the problem.

= gcd(r₁, r₀ mod r₁) **Example 1** : $r_0 = 84$, $r_1 = 30$ $gcd(84, 30) = gcd(84 \mod 30, 30) = gcd(24, 30)$ $= \gcd(30 \mod 24, 24) = \gcd(6, 24) = 6$ Terminate once a zero remainder is $= gcd(24 \mod 6, 6) = gcd(0, 6)$ reached; gcd is the last remainder. $r_0 r_1 r_2 = 84 = 2.30 + 24$ Same e.g., (illustrated) 30 = 1.24 + 6 → gcd (84, 30) = 6 ... zero remainder reached.

Example 2:
$$r_0 = 27$$
, $r_1 = 21$

gcd (r_{0}, r_{1}) for $r_{0} = 27$ and $r_{1} = 21$

	6			
6	6	6	3	
3 3				n

 $gcd(27, 21) = gcd(1 \cdot 21 + 6, 21) = gcd(21, 6)$ $gcd(21, 6) = gcd(3 \cdot 6 + 3, 6) = gcd(6, 3)$ $gcd(6, 3) = gcd(2 \cdot 3 + 0, 3) = gcd(3, 0) = 3$

Note: very efficient method even for long numbers: The complexity grows **linearly** with the number of bits


```
Example 3: r_0 = 973, r_1 = 301
                  r<sub>0</sub> r<sub>1</sub>
gcd(973, 301)
                  r_0 = r_1 = r_2
973 = 3.301 + 70
                 30\hat{1} = 4.7\hat{0} + 21
                 70 = 3·21 +(7)
                                         → gcd(973, 301) = 7
                  21 = 3 \cdot 7 + 0 ... zero remainder reached.
```


Pretty simple...

Extended Euclidean Algorithm (EEA)

Goal: rewrite $gcd(r_0, r_1) = s \cdot r_0 + t \cdot r_1$

Why: To compute modular inverses of large numbers.

How: Using regular EA for the LHS & the extension

14

Extended Euclidean Algorithm (EEA)

- Extend the Euclidean algorithm to **find modular inverse** of $r_1 \mod r_0$
- EEA computes *s*,*t*, and the gcd : $gcd(r_0, r_1) = s \cdot r_0 + t \cdot r_1$
- Take the relation **mod** r_0 $s \cdot r_0 + t \cdot r_1 = 1$

 $s \cdot 0 + t \cdot r_1 \equiv 1 \mod r_0$

 $r_1 \cdot t \equiv 1 \mod r_0$

- \rightarrow Compare with the definition of modular inverse: *t* is the inverse of $r_1 \mod r_0$
- Note that gcd $(r_0, r_1) = 1$ in order for the inverse to exist
- Recursive formulae to calculate s and t in each step

 \rightarrow "magic table" for *r*, *s*, *t* and a quotient *q* to derive the inverse with pen and paper

Extended Euclidean Algorithm

How to compute the modular inverse using the Extended Euclidean Algorithm:

i	$q_i = \left \frac{r_{i-2}}{r_{i-1}} \right $	$\begin{array}{l} \mathbf{s}_i = \\ \mathbf{s}_{i-2} - \mathbf{q}_{i-1} \cdot \mathbf{s}_{i-1} \end{array}$	$\begin{array}{c} t_i = \\ t_{i-2} - \mathbf{q}_{i-1} \cdot t_{i-1} \end{array}$	$\begin{array}{c} r_i = \\ r_{i-2} - q_{i-1} \cdot r_{i-1} \end{array}$
0		s ₀ = 1	$t_0 = 0$	r_0
1		$s_1 = 0$	$t_1 = 1$	r_1
2	$q_1 = \left\lfloor \frac{r_0}{r_1} \right\rfloor$	$s_2 = s_0 - q_1 \cdot s_1$	$\begin{array}{c} t_2 = \\ t_0 - \mathbf{q}_1 \cdot t_1 \end{array}$	$r_2 = r_0 - q_1 \cdot r_1$
3	$q_2 = \left\lfloor \frac{r_1}{r_2} \right\rfloor$	$s_3 = s_1 - q_2 \cdot s_2$	$\begin{array}{c} t_3 = \\ t_1 - \mathbf{q}_2 \cdot t_2 \end{array}$	$r_3 = r_1 - q_2 \cdot r_2$
:	÷	:		

For initialization (steps $i \in \{0,1\}$, cell values are predetermined as proven before.

For $i \ge 2$, compute the q_i , s_i , t_i , r_i columns.

For each iteration *i*, check:

If $r_i=1$ is reached, then $gcd(r_0, r_1) = r_i = 1$. Then mult. inverse of $r_1 \mod r_0$ exists and equals t_i . Stop. <u>Else</u>, if $r_i=0$ is reached, then $gcd(r_0, r_1) = r_{i-1}$. Then mult. inverse of $r_1 \mod r_0 \operatorname{doesn't} exist$. Stop.

Extended Euclidean Algorithm (EEA)

$$gcd(r_0, r_1)$$
 $r_0 = q_1 \cdot r_1 + r_2$ $r_2 = s_2 \cdot r_0 + t_2 \cdot r_1$

 $gcd(r_1, r_2)$ $r_1 = q_2 \cdot r_2 + r_3$ $r_3 = s_3 \cdot r_0 + t_3 \cdot r_1$

 $gcd(r_{l-1}, r_l)$ $r_{l-1} = q_l \cdot r_l + 0$

 $gcd(r_{i-2}, r_{i-1})$ $r_{i-2} = q_{i-1} \cdot r_{i-1} + r_{i}$ $r_{i} = s_{i} \cdot r_{0} + t_{i} \cdot r_{1} = gcd(r_{0}, r_{1})$ r_{i} is the last remainder, i.e., the result of $gcd(r_{0}, r_{1})$ i.e., the result of $gcd(r_0, r_1)$.

How does that lead to modulo inverse?

```
To compute a<sup>-1</sup> mod n:
gcd(n, a) = r_1 = s \cdot n + t \cdot a = 1
                                       (condition for inverse existence)
Then s \cdot 0 + t \cdot a \equiv 1 \mod n
                                        (mod n for both sides)
              t \cdot a \equiv 1 \mod n
                 t \equiv a^{-1} \mod n
```


Extended Euclidean Algorithm (EEA)

Example:

- Calculate the modular Inverse of 12 mod 67:
- From magic table follows $-5 \cdot 67 + 28 \cdot 12 = 1$
- Hence 28 is the inverse of 12 mod 67.

• Check:
$$28 \cdot 12 = 336 \equiv 1 \mod 67$$

i	q_{i-1}	r_i	s_i	t_i
2	5	7	1	-5
3	1	5	-1	6
4	1	2	2	-11
5	2	1	-5	28

Multiplicative Inverse in $GF(2^m)$

Find the multiplicative inverse of x³+x+1 in GF(2⁴) with P(x)=x⁴+x+1

Using EEA:

$$x^{4}+x+1=(x)(x^{3}+x+1) + (x^{2}+1) \dots x^{2}+1=(x^{4}+x+1) + (x)(x^{3}+x+1)$$

 $(x^{3}+x+1) = (x)(x^{2}+1) + 1 \dots 1 = (x)(x^{2}+1) + (x^{3}+x+1)$
 $= (x)(x^{4}+x+1) + (x^{2}+1)(x^{3}+x+1)$

 $[(x)(x^4+x+1) + (x^2+1)(x^3+x+1)] \mod P(x) \rightarrow multiplicative inverse = x^2+1$

Multiplicative Inverse in $GF(2^m)$

Example We are looking for the inverse of $A(x) = x^2$ in the finite field $GF(2^3)$ with $P(x) = x^3 + x + 1$. The initial values for the t(x) polynomial are: $t_0(x) = 0$, $t_1(x) = 1$

$$A^{-1}(x) = t(x) = t_4(x) = x^2 + x + 1.$$

ECE5632 - Spring 2024-Dr. Farah Raad

Multiplicative Inverse in $GF(2^m)$

Here is the check that t(x) is in fact the inverse of x^2 , where we use the properties that $x^3 \equiv x + 1 \mod P(x)$ and $x^4 \equiv x^2 + x \mod P(x)$:

$$t_4(x) \cdot x^2 = x^4 + x^3 + x^2$$

$$\equiv (x^2 + x) + (x + 1) + x^2 \mod P(x)$$

$$\equiv 1 \mod P(x)$$

For PKC, it's important to know how many numbers in Z_m that are relatively prime to m.

Why and how?

Why: Will be clear later once we study actual PK cryptosystems.

How: Using Euler's Phi function simply counts these numbers.

Manually counting may work for small numbers.

e.g., manually count the numbers in Z₆ that are relatively prime to 6. $\rightarrow \Phi(6) = 2$

For large numbers, we use Euler's Phi function.

For PKC, it's important to know how many numbers in Z^m that are relatively prime to m.

Why and how?

Why: Will be clear later once we study actual PK cryptosystems. How: Using Euler's Phi function simply counts these numbers.

- New problem, important for public-key systems, e.g., RSA: Given the set of the *m* integers {0, 1, 2, ..., *m* -1},
- > How many numbers in the set are relatively prime to m?

• <u>Answer:</u> Euler's Phi function $\Phi(m)$

Example for the sets {0,1,2,3,4,5} (m=6),

gcd(0,6) = 6 gcd(1,6) = 1 \leftarrow gcd(2,6) = 2 gcd(3,6) = 3 gcd(4,6) = 2gcd(5,6) = 1 \leftarrow and $\{0,1,2,3,4\}$ (m=5) gcd(0,5) = 5 gcd(1,5) = 1 \leftarrow gcd(2,5) = 1 \leftarrow gcd(3,5) = 1 \leftarrow

→ 1 and 5 relatively prime to m=6, hence $\Phi(6) = 2$ $\rightarrow \phi(5) = 4$

gcd(4,5) = 1

Testing one gcd per number in the set is extremely slow for large m.

- > Manually counting may work for small numbers.
- e.g., manually count the numbers in Z₆ that are relatively prime to 6. $\rightarrow \Phi(6) = 2$
- ✓ For **large numbers**, we use Euler's Phi function.

- If canonical factorization of *m* known:
 (where *p_i* primes and *e_i* positive integers)
- then calculate Phi according to the relation

$$m = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_n^{e_n}$$

$$\Phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1})$$

• Phi especially easy for $e_i = 1$, e.g., $m = p \cdot q \rightarrow \Phi(m) = (p-1) \cdot (q-1)$

 Note: Finding Φ(m) is computationally easy if factorization of m is known (otherwise the calculation of Φ(m) becomes computationally infeasible for large numbers)

27

How to compute $\Phi(m)$ for a large m?

Let m have the following factorization form:

$$m = p_1^{e_1} \cdot p_2^{e_2} \cdot \ldots \cdot p_n^{e_n},$$

Where p_i are distinct prime numbers and e_i are positive integers, then

$$\Phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1}).$$

e.g. 1) compute $\Phi(m)$ for m = 240

m = 16.15 =
$$2^4 \cdot 3^1 \cdot 5^1$$

= $p_1^{e_1} p_2^{e_2} p_3^{e_3}$

$$\Phi(240) = \prod_{i=1}^{e_i} (p_i^{e_i} - p_i^{e_{i-1}}) = (2^4 - 2^3)(3^1 - 3^0)(5^1 - 5^0)$$
$$= 8 \cdot 2 \cdot 4 = 64$$

e.g. 2) compute $\Phi(m)$ for m = 100

Euler's Theorem

Used in public-key cryptography. Euler's Theorem:

Let a and m be integers with gcd(a,m) = 1, then:

$$a^{\Phi(m)} \equiv 1 \mod m$$

 \Box e.g., Let's check with m = 12 and a = 5.

$$\Phi(12) = \Phi(2^2 \cdot 3) = (2^2 - 2^1)(3^1 - 3^0) = (4 - 2)(3 - 1) = 4$$

$$5^{\Phi(12)} = 5^4 = 25^2 = 625 \equiv 1 \mod 12$$

Fermat's Little Theorem

> Fermat's Little Theorem:

Given a prime p and an integer a: $a^p \equiv a \pmod{p}$ Can be rewritten as $a^{p-1} \equiv 1 \pmod{p}$

- Use: Find modular inverse, if p is prime. Rewrite to $a (a^{p-2}) \equiv 1 \pmod{p}$
- Comparing with definition of the modular inverse
 - → $a^{-1} \equiv a^{p-2} \pmod{p}$ is the modular inverse modulo a prime *p*

 $1 \mod m$

Fermat's Little Theorem

Fermat's Little Theorem: Let a be an integer and p be a prime,

> then: $a^p \equiv a \mod p$ so, $a^{p-1} \equiv 1 \mod p$ or, $a \cdot a^{p-2} \equiv 1 \mod p$ so, $a^{-1} \equiv a^{p-2} \mod p$

 \checkmark e.g., Let's check with p = 7 and a = 2

$$a^{p-2} = 2^5 = 32 \equiv 4 \mod 7$$

 $2 \cdot 4 \equiv 1 \mod 7$

Therefore, $2^{-1} \equiv 4 \mod 7$

Fermat's Little Theorem and Euler's Theorem

- Fermat's little theorem = special case of Euler's Theorem
- for a prime $\mathbf{p}:\ \mathbf{\Phi}(p)=(p^1-p^0)=p-1$

→ Fermat:
$$a^{\Phi(p)} = a^{p-1} \equiv 1 \pmod{p}$$

Notes:

If p is prime, then $\Phi(p) = p - 1$ if p and q are prime, then $\Phi(pq) = \Phi(p) \times \Phi(q)$

How to prove that $\Phi(pq) = \Phi(p) \times \Phi(q)$?

Since Z_n has (pq-1) positive integers.

Since integers that are not relatively prime to n are {p,2p,...(q-1)p} and {q,2q,...(p-1)q} ... i.e., (p-1) elements + (q-1) elements.

Then the number of integers in Z_n that are relatively prime to n = (pq-1) – [(p-1)+(q-1)]

i.e., pq – (p+q) +1

```
Then \Phi(n)=(p-1)x(q-1) = \Phi(p) \times \Phi(q)
```


Thank You!

See You next Lectures!! Any Question?

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt Tel:+202383711146 Fax:+20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline:16672 Website: www.msa.edu.eg

