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Symmetric Cryptography Revisited

» Principle of Symmetric-Key encryption:
®* The same secret key K is used for encryption and decryption

® Encryption and Decryption are very similar (or even identical) functions

X: plaintext

Y: ciphertext
y Je y J 4 .y K: key

Alice I ! Bob

{ Secure channel U

d We have some problems; key distribution, number of keys, etc.
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Symmetric Cryptography Revisited
» Symmetric Cryptography: Analogy

Alice Bob

-

K I

Safe with a strong lock, only Alice and Bob have a copy of the key
* Alice encrypts : locks message in the safe with her key

® Bob decrypts : uses his copy of the key to open the safe
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Principles of Asymmetric Cryptography

» ldea behind Asymmetric Cryptography

New ldea:

Use the ,good old mailbox” principle:

& Everyone can drop a letter
But: Only the owner has the
correct key to open the box ol
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Asymmetric (Public-Key) Cryptography
» Principle: “Split up” the key

N

Public Key (K,,,;) Secret Key (K,
(Encrypt) (Decrypt)

v During the key generation, a key pair Kpub and Kpris computed
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Asymmetric (Public-Key) Cryptography

» Asymmetric Cryptography: Analogy

Alice Bob
deposit | - unlock . - -
= - A< @~
public key ‘ P——
(Kouo 2 o

Safe with public lock and private lock:
* Alice deposits (encrypts) a message with the - not secret - public key Kpub
® Only Bob has the - secret - private key Kpr to retrieve (decrypt) the message
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Asymmetric (Public-Key) Cryptography

» Basic protocol for Public-Key encryption:

Koub: public key
Koe: private key

pub

Alice Y~= EK{‘:) Bob

Kpubu' I{|::r

dﬁiﬂ =X

v To study e() and d() .. more Math is needed...
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Essential Number Theory for PKC
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Euclidean Algorithm (EA)

» Compute the greatest common divisor gcd (ro, r1) of two integers roand r1
*» gcd is easy for small numbers:

1. factor roand r1
2. gcd = highest common factor

Examplel: r =84,r; = 30

- The gcd is the product of all common prime factors:
2-3=6=gcd(30,84)

¢ But: Factoring is complicated (and often infeasible) for large numbers
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Euclidean Algorithm (EA)

Such method doesn’t work with large numbers, i.e., the case of PKC. We need the EA.

e.. 3203{; Efficient”
’ (faster, less complex)

Basic idea: ged(rg, ry) = ged(rgmod ry, ry) ... we simply reduce the problem.

= gcd(ry, rgmod ry)

Example1: ro =84,r; = 30
gcd(84, 30) =gcd(84 mod 30, 30) =gcd(24, 30)

= gcd(30 mod 24, 24) = gcd(6, 24] Terminate once a

zero remainder is
= gcd{24 mod 5, E} = Ecd{u: E} reached: gcd is the

last remainder.

Mo h n
Same e.g., 84=2-30+24

(illustrated) ,f”f /r‘

30=124+6) —» ged (84,30) = 6

&

-
~

24'; 46+0 ... Zero remainder reached. H



Euclidean Algorithm (EA)

Example 2: ro =27 ,r; = 21

ged (rg ry) forrp=27 and r, = 21

21 & gcd(27, 21) = ged(1- 21+6, 21) = ged(21, 6)

6 6 6 3 gcd(21, 6) = ged(3-6+3, 6) = ged(6, 3)

3] 3 ged(6, 3) = ged(2-3+0, 3) = ged(3, 0) =3

» Note: very efficient method even for long numbers:
The complexity grows linearly with the number of bits
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Euclidean Algorithm (EA)

Example 3: ry =973,r; = 301

Ny
gcd(973, 301)

o ry ¥
973 =3-301 +70

T

i 3
301=4.70 + 21

P
I
70=3-21 #7)—» gcd(973,301) = 7
S/
Zi‘l' = 3+?'+ 0 ...zeroremainder reached.

Pretty simple...
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Extended Euclidean Algorithm (EEA)

Goal: rewrite ged(ry, ry) =srT,+try

5
Why and How? [@, %3}
A

Why: To compute modular inverses of large numbers.
G f

How: Using regular EA for the LHS & the extension
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Extended Euclidean Algorithm (EEA)

* Extend the Euclidean algorithm to find modular inverse of r, mod r,

* EEA computes s,f, andthe ged :  ged(rp.ry) =s-rg+1 -1

* Take the relation mod r, s-rg+t-rp =1
5:0+t-rp =1modn
ri-t=1mod ry

- Compare with the definition of modular inverse: tis the inverse of r, mod r,
* Note that ged (r, r,) = 1 in order for the inverse to exist
* Recursive formulae to calculate s and tin each step

- .magic table” for r, s, t and a quotient q to derive the inverse with pen and paper
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Extended Euclidean Algorithm

» How to compute the modular inverse using the Extended Euclidean

Algorithm:
i | g = FL‘_E.‘ Si = L = =
T Si—2 — Qi-1"'Si-1 | ti-2 —Qi-1 ' ti—1 | "i—2 — Qi-1 ' Ti—1

0 Sp = tg = i
1 S = 1 =1 I
7 q = T S2 = = -

5\ So—q1°85 o —q1 4y o —q1' N
3 q; = n 83 = i3 = =

2 51— 02°S» 1—-0q2'0 n—qmn

For initialization (steps i€{0,1}, cell values are predetermined as proven before.
For i22, compute the q, s;, t,, r,columns.

For each iteration i, check:
If r=1 is reached, then gecd(r,,r,) =r, = 1. Then mult. inverse of r, mod r, exists and equals t,. Stop.

Else, if r=0 is reached, then ged(r,,r,) = r, ;. Then mult. inverse of r, mod r, doesn’t exist. Stop.



Extended Euclidean Algorithm (EEA)

ged(ry, ry) fg=0yry+ 1,

ged(r,, ry) ry=0q,r,+r;

ged(ry,, r.4) M2 = Qu'hg T 1

ged(r,,, n) My =a:n+0

To compute a1 mod n:
ged(n, a)=r=sn+ta=1
Thens-0+t-a=1modn
t-a=1modn
t=almodn

LN N ]

5 t
r =5y + tyry = ged(rg, ry)

(condition for inverse existence)
(mod n for both sides)
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Extended Euclidean Algorithm (EEA)

Example: ilgiy rilsi 1
* Calculate the modular Inverse of 12 mod 67: 2l 5711 -5
* From magic table follows —5-67 + 2812 = | 3] 15]-1 6
* Hence 28 is the inverse of 12 mod 67. 4 | 2] 2-11

5 2 1]-5 28

. Check: 28-12=336=1mod67 v
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Multiplicative Inverse in GF(2™)

Find the multiplicative inverse of x*+x+1 in GF(2%) with P(x)=x*+x+1

Using EEA:
XHx+1= (X)(34x+1) + (x241) . . . x%+1= (xHx+1) + (x) (3 +x+1)
(34+x+1) = (x)(x*+1) + 1 o1 = (x)(P41) + (P+x+1)

= (x)(x*+x+1) + (x2+1) (3 +x+1)

[()(x*+x+1) + (x?+1)(x*+x+1)] mod P(x) = multiplicative inverse = x?+1
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Multiplicative Inverse in GF(2™)

Example We are looking for the inverse of A(x) = x? in the finite field GF(2°)
with P(x) = x> +x+ 1. The initial values for the 7(x) polynomial are: fy(x) = 0,
I (I) =3

Iteration|r;_»(x) = [gi_1(x)]ri 1 (x)+ [r;(x)]|t:(x)
2 X 4x+1 = [x]x*+[x+1] h=to—qit1 =0—x1=x
3 X2 = [x] (x+ 1)+ [x] =t —qatr=1—x(x)=1+x?
4 x+1 = [1]x+[1] ts =t) —qgat3 =x— 1 (1 +x?)
I = 1—}—.1'—}—12
5 x = [x] 1 +[0] Termination since r5 = 0

AN ) =t(x) =1(x) =x* +x+1.

ECE5632 - Spring 2024-Dr. Farah Raad 21



Multiplicative Inverse in GF(2™)

Here is the check that #(x) is in fact the inverse of x*, where we use the properties
that x> = x+ 1 mod P(x) and x* = x*> + x mod P(x):

ta(x) X =+ X
= (J;:2 +x)+ (x+1) + x> mod P(x)
= 1 mod P(x)
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Euler’s Phi Function

For PKC, it’s important to know how many numbers in Z_ that are relatively prime to m.

Why and how?

Why: Will be clear later once we study actual PK cryptosystems.

How: Using Euler’s Phi function simply counts these numbers.

Manually counting may work for small numbers.

e.g., manually count the numbers in Z, that are relatively prime to 6.

For large numbers, we use Euler’s Phi function.
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Euler’s Phi Function

» For PKC, it's important to know how many numbers in Z.that are
relatively prime to m.

Why and how?

Why: WIll be clear later once we study actual PK cryptosystems.
How: Using Euler’s Phi function simply counts these numbers.

» New problem, important for public-key systems, e.g., RSA:
Given the set of the mintegers {0, 1, 2, ..., m -1},
» How many numbers in the set are relatively prime to m ?

« Answer: Euler‘s Phi function @(m)
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Euler’s Phi Function

* Example for the sets {0,1,2,3,4,5} (m=6), and {0,1,2,3,4} (m=5)
acd(0,6) =6
;cd(tz,é) =2 ged(1.5) = 1 o
icd(4,6) "y gcd(3.5) = | ¢—
gcd(S.G) =] e gcd(4.5) = 1
- 1 and 5 relatively prime to m=6, > @B5)=4

hence @(6) = 2

* Testing one gcd per number in the set is extremely slow for large m.
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Euler’s Phi Function

» Manually counting may work for small numbers.

e.g., manually count the numbers in Z. that are relatively primeto 6. =2 ®(6) = 2

v' For large numbers, we use Euler’s Phi function.
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Euler’s Phi Function

* If canonical factorization of m known: m = p‘]' Py p
(where p; primes and e; positive integers)

* then calculate Phi according to the relation D(m) = H{ p":’a - ﬁ-ifa'—l)

i i
i=1

* Phi especially easy fore;=1,e.g.,. m=p-q = ®(m)=(p-1) (g-1)

* Example m =899 =29 - 31:
@(899) = (29-1) - (31-1) =28 - 30 = 840

* Note: Finding ®(m) is computationally easy if factorization of m is known
(otherwise the calculation of @(m) becomes computationally infeasible for large numbers)
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Euler’s Phi Function

How to compute ®(m) for a large m?

Let m have the following factorization form:
€2 €n

— €l .
M=P; Py *ee* Dy

Where p, are distinct prime numbers and e, are positive integers,

then
H

D(m) = H(;}?" - pf’l_l b

i=1
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Euler’s Phi Function

e.g. 1) compute ®(m) for m = 240

m = 16-15 24 .31 . 51

€1 €2 €3
Py P Ps

3
d(240) = n(pief_ pfi-1) = (24-23)(31-39)(5%-59)
i=1

= 8-2-4=64

e.g. 2) compute ®(m) for m =100
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Euler’s Theorem
» Used in public-key cryptography.

Euler’s Theorem:
Let a and m be integers with gcd(a,m) = 1, then:

a®™) = 1 mod m
de.g., Let's check with m =12 and a = 5.
®(12) = @(2*-3) = (2°-2")(3' -3%) = (4-2)(3- 1)

5P02) — 5% _ 252 — 625 =1 mod 12
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Fermat’s Little Theorem

> Fermat’s Little Theorem:

* (Given a prime p and an integer a: a’ =a ( mod p)

* Can be rewritten as a’” ' =1 (mod p)

* Use: Find modular inverse, if p is prime. Rewrite to d @ | (nmd p)
* Comparing with definition of the modular inverse l @ 1 mod m

> a =gl (mod p) is the modular inverse modulo a prime p
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Fermat’s Little Theorem

» Fermat’s Little Theorem:
Let a be an integer and p be a prime,

then: aP=amod p
so,a”'=1modp
or,a-a”2=1modp
so,al=af?modp

v e.d., Let’s check withp=7anda=2
aP~?=2> =32 =4mod 7
2:-4=1mod7

Therefore, 271 =4 mod 7
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Fermat’s Little Theorem and Euler’s Theorem

* Fermat's little theorem = special case of Euler's Theorem
* for a prime p: ‘I’(P) — (,-’Jl — p”) =p— |
> Fermat: 4PWP) — gp—1 = | (mod p)
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Euler’s Phi Function

Notes:

If pis prime, then ®(p)=p—1

if pand g are prime, then ®(pg) = ®(p) x ®(q)
How to prove that @(pg) = ®(p) x P(q)?

Since Z, has (pg-1) positive integers.

Since integers that are not relatively prime to n are {p,2p,...(g-1)p} and {q,2q,..,(p-1)q} ...
i.e., (p-1) elements + (g-1) elements.

Then the number of integers in Z, that are relatively prime to n = (pg-1) = [(p-1)+(g-1)]
i.e., pq— (p+q) +1

Then ®(n)=(p-1)x(g-1) = ®(p) x ®(q)

34



IN EGYPT SINCE 1996
Established by Dr.Nawal El Degwi
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Thank You!

See You next Lectures!!
Any Question?
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