

Cryptography ECE5632 - Spring 2024

Lecture 7B

Dr. Farah Raad

The First British Higher Education in Egypt

The same start and the FT SQ

MSA UNIVERSITY جامعة أكتوبر للعلوم الحديثة والآداب

RSA Algorithm & Diffie-Hellman Key

ECE5632 - Spring 2024-Dr. Farah Raad

PKC Algorithms: Three Families

Some History

✓ 1976: Public key cryptography first introduced:

Martin Hellman and Whitfield Diffie published their landmark publickey paper in 1976

✓ 1977: Rivest–Shamir–Adleman (RSA) proposed the asymmetric RSA cryptosystem algorithm

- Until now, RSA is the most widely use asymmetric cryptosystem although elliptic curve cryptography (ECC) becomes increasingly popular
- ✓ RSA is mainly used for two applications
 - Transport of (i.e., symmetric) keys
 - Digital signatures

Encryption and Decryption

- ✓ RSA operations are done over the integer ring Z_n (i.e., arithmetic modulo n), where n = p * q, with p, q being large primes
- \checkmark Encryption and decryption are simply exponentiations in the ring
- ✓ In practice *x*, *y*, *n* and *d* are very long integer numbers (≥ 1024 bits)

Definition

Given the public key $(n,e) = k_{pub}$ and the private key $d = k_{pr}$ we write

 $y = e_{kpub}(x) \equiv x^e \mod n$ $x = d_{kpr}(y) \equiv y^d \mod n$

where x, y ε Z_n

We call e_{kpub}() the encryption and d_{kpr}() the decryption operation.

≻Key Generation

✓ Like all asymmetric schemes, RSA has set-up phase during which the private and public keys are computed

Algorithm: RSA Key Generation

Output: public key: $k_{pub} = (n, e)$ and private key $k_{pr} = d$

- 1. Choose two large primes *p*, *q*
- 2. Compute n = p * q
- 3. Compute $\Phi(n) = (p-1) * (q-1)$
- 4. Select the public exponent $e \in \{1, 2, ..., \Phi(n)-1\}$ such that $gcd(e, \Phi(n)) = 1$
- 5. Compute the private key *d* such that $d * e \equiv 1 \mod \Phi(n)$
- 6. **RETURN** $k_{pub} = (n, e), k_{pr} = d$

Remarks:

• Choosing two large, distinct primes p, q (in Step 1) is non-trivial

• $gcd(e, \Phi(n)) = 1$ ensures that *e* has an inverse and, thus, that there is always a private key *d*

Notes:

- ✓ In practice, n is ≥ 1024 bits long.
- ✓ Strength of RSA with $n = 2^{3072}$ is equivalent to AES128.
- ✓ Longer n means more security, but slower computation.
- ✓ p and q should differ in length by only a few digits . . . p, q ≥ 512 bits long

Example: RSA with small numbers:

Parameters Example

Example of practical RSA parameters for n = $1024 \rightarrow$

- $p = E0DFD2C2A288ACEBC705EFAB30E4447541A8C5A47A37185C5A9 \\ CB98389CE4DE19199AA3069B404FD98C801568CB9170EB712BF \\ 10B4955CE9C9DC8CE6855C6123_h$
- $\label{eq:q} q = EBE0FCF21866FD9A9F0D72F7994875A8D92E67AEE4B515136B2 \\ A778A8048B149828AEA30BD0BA34B977982A3D42168F594CA99 \\ F3981DDABFAB2369F229640115_h \\ \end{cases}$
- n = CF33188211FDF6052BDBB1A37235E0ABB5978A45C71FD381A91 AD12FC76DA0544C47568AC83D855D47CA8D8A779579AB72E635 D0B0AAAC22D28341E998E90F82122A2C06090F43A37E0203C2B 72E401FD06890EC8EAD4F07E686E906F01B2468AE7B30CBD670 $255C1FEDE1A2762CF4392C0759499CC0ABECFF008728D9A11ADF_{h}$
- e = 40B028E1E4CCF07537643101FF72444A0BE1D7682F1EDB553E3 AB4F6DD8293CA1945DB12D796AE9244D60565C2EB692A89B888 1D58D278562ED60066DD8211E67315CF89857167206120405B0 8B54D10D4EC4ED4253C75FA74098FE3F7FB751FF5121353C554 $391E114C85B56A9725E9BD5685D6C9C7EED8EE442366353DC39_h$ d = C21A93EE751A8D4FBFD77285D79D6768C58EBF283743D2889A3 95F266C78F4A28E86F545960C2CE01EB8AD5246905163B28D0B 8BAABB959CC03F4EC499186168AE9ED6D88058898907E61C7CC CC584D65D801CFE32DFC983707F87F5AA6AE4B9E77B9CE630E2 $C0DF05841B5E4984D059A35D7270D500514891F7B77B804BED81_h$

Proof of Correctness

We need to prove that $d_{Kpr}(e_{Kpub}(x)) = x$

i.e., prove that $(x^e)^d \equiv x^{de} \mod n \equiv x \mod n$

RSA Algorithm: Practical Consideration

RSA is a heavy user of exponentiation...

Encryption: $y = x^e \mod n$

Decryption: $x = y^d \mod n$

Problem: How to quickly exponentiate with extremely large numbers?

Solution: Using Square-and-Multiply Algorithm

			Represent the exponent in binary; x ¹¹⁰¹⁰		
e.g., x ²⁶			Initially start with x ¹		
Square	SQ	x·x=x ²	$(x^1)^2 = x^{10}$		
Multiply	MUL	$x \cdot x^2 = x^3$	$(x^{10})x = x^{11}$	Simply construct the binary	
	SQ	x ³ ·x ³ =x ⁶	$(x^{11})^2 = x^{110}$	evonent from left to right by	
	SQ	x ⁶ ·x ⁶ =x ¹²	$(x^{110})^2 = x^{1100}$	shifting (SO) and adding (MUII)	
	MUL	x·x ¹² =x ¹³	$(x^{1100})x = x^{1101}$		
	SQ	x ¹³ ·x ¹³ =x ²⁶	$(x^{1101})^2 = x^{11010}$	Note: MUL is only used	

Looks random.. How do I know when to SQ and when to MUL?

ECE5632 - Spring 2024-Dr. Farah Raad

for the 1 bits.

Security of RSA

The RSA discussed so far is called schoolbook RSA.

It has several weaknesses:

- RSA is deterministic.
- y=x for x= 0, 1, −1.
- RSA is malleable.

A malleable cipher allows an attackers to modify the value of x without decrypting y. e.g., attacker wants to multiply x by s=2. But only has access to y and e. Then replacing y with s^ey leads to.. decryption: $(s^ey)^d \equiv s^{ed}x^{ed} \equiv sx \mod n$.

In practice, these weaknesses can be eliminated by using <u>padding</u>. i.e., Optimal Asymmetric Encryption Padding (OAEP)

ECE5632 - Spring 2024-Dr. Farah Raad

Security of RSA: Attacks

Attack possibilities against RSA:

- 1. Protocol attacks
- 2. Mathematical attacks. i.e., factoring the modulus.

The attackers knows n and e.

But can't compute d because p and q are unknown!

Longer n is more difficult to factor, but slower algorithm.

Minimum n size = 1024. Recommended 2048-4096.

3. Side-channel attacks.

Exploit info leaked from the processing power or time (i.e., physical channels)

PKC Algorithms: Three Families

- Proposed in 1976 by Whitfield Diffie and Martin Hellman
- Widely used, e.g. in Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol Security (IPSec)
- The Diffie-Hellman Key Exchange (DHKE) is a key exchange protocol and not used for encryption
- (For the purpose of encryption based on the DHKE, ElGamal can be used.)

Diffie-Hellman setup:

- 1. Choose a large prime p.
- 2. Choose an integer $\alpha \in \{2,3,...,p-2\}$.
- 3. Publish p and α .

p is a large prime ≥ 1024 bits long. We'll soon discuss the nature of α .

17

ECE5632 - Spring 2024-Dr. Farah Raad

Essential idea:

- Choose two random secrets a and b
 (α^a)^b mod p = (α^b)^a mod p
- Both parties can calculate that value without sending secrets over the wire

Alice

Bob

Choose random private key Choose random private key $k_{prA} = a \in \{1, 2, \dots, p-1\}$ $k_{prB} = b \in \{1, 2, ..., p-1\}$ Compute corresponding public key Α $k_{pubA} = A = \alpha^a \mod p$ Compute correspondig public key В $k_{pubB} = B = \alpha^{b} \mod p$ Compute common secret Compute common secret $k_{AB} = A^b = (\alpha^b)^a \mod p$ $k_{AB} = B^a = (\alpha^a)^b \mod p$ We can now use the joint key k_{AB} for encryption, e.g., with AES $x = AES^{-1}_{kAB}(y)$ v $y = AES_{kAB}(x)$ ECE5632 - Spring 2024-Dr. Farah Raad

19

Diffie-Hellman Key Exchange (DHKE) <u>Example</u>

Compute common secret $k_{AB} = A^b = 3^{12} = 16 \mod 29$

So, ...
$$K_{AB} \equiv B^a \mod p \equiv A^b \mod p$$

How is that possible?? A $\equiv \alpha^a \mod p$
 $B \equiv \alpha^b \mod p$

Proof:

 $B^{a} \equiv (\alpha^{b})^{a} \equiv \alpha^{ab} \mod p$ $A^{b} \equiv (\alpha^{a})^{b} \equiv \alpha^{ab} \mod p$

Very simple. Very important.

α must be a <u>primitive element</u>. What that means? Time for some math...

ECE5632 - Spring 2024-Dr. Farah Raad

Cyclic Groups

ECE5632 - Spring 2024-Dr. Farah Raad

Revisiting Groups

Group (G, •): a set of elements, with 1 group operator.

E.g., : (G, +) additive group (G, ×) multiplicative group

Has certain properties that must be satisfied:

A1. Closure:

If a and b belong to G, then a \circ b is also in G.

```
A2. Associativity:
```

```
a \circ (b \circ c) = (a \circ b) \circ c for all a, b, c in G
```

M1...

etc. . .

□ See Lecture 6A.

Revisiting Groups

Theorem 8.2.1

The set \mathbb{Z}_n^* which consists of all integers i = 0, 1, ..., n-1 for which gcd(i,n) = 1 forms an abelian group under multiplication modulo n. The identity element is e = 1.

Example Let us verify the validity of the theorem by considering the following example:

If we choose n = 9, \mathbb{Z}_n^* consists of the elements $\{1, 2, 4, 5, 7, 8\}$.

Multiplication table for \mathbb{Z}_9^*

$\times \text{ mod } 9$	124578
1	124578
2	248157
4	487215
5	512784
7	751842
8	875421

Revisiting Groups

Example : Is (Z_9, \mathbf{x}) a multiplicative group?

 $Z_9 = (0, 1, 2, (3), 4, 5, (6), 7, 8$ Check for property A1, A2, M1, etc..

Problem with inverse property: Inverses only exist for elements a; gcd(a,9)=1 \therefore elements 0, 3, 6 have no inverse in Z₉.

So, we'll define a special set called Z_n^* , by simply removing noninvertible elements. The elements of Z_n^* still satisfy all properties of a group.

i.e., $Z_9^* = \{1, 2, 4, 5, 7, 8\}$ is a multiplicative group.

|G| = Order of G: The number of elements in G. ... a.k.a. the cardinality of G.

Definition 8.2.2 Finite Group

A group (G, \circ) is finite if it has a finite number of elements. We denote the cardinality or order of the group G by |G|.

(Z_n,+): the cardinality of Z_n is |Z_n| = n since Z_n = {0,1,2,...,n-1}.
 (Z^{*}_n, ·): remember that Z^{*}_n is defined as the set of positive integers smaller than n which are relatively prime to n. Thus, the cardinality of Z^{*}_n equals Euler's phi function evaluated for n, i.e., |Z^{*}_n| = Φ(n). For instance, the group Z^{*}₉ has a cardinality of Φ(9) = 3² − 3¹ = 6. This can be verified by the earlier example where we saw that the group consist of the six elements {1,2,4,5,7,8}.

26

Definition 8.2.3 Order of an element

The order ord(a) of an element a of a group (G, \circ) is the smallest positive integer k such that

$$a^{k} = \underbrace{a \circ a \circ \ldots \circ a}_{k \text{ times}} = 1,$$

where 1 is the identity element of G.

- In the previous example, ord(3)=5.
- Don't confuse ord(a) with |G|

Example We try to determine the order of a = 3 in the group \mathbb{Z}_{11}^* . For this, we keep computing powers of *a* until we obtain the identity element 1.

$$a^{1} = 3$$

$$a^{2} = a \cdot a = 3 \cdot 3 = 9$$

$$a^{3} = a^{2} \cdot a = 9 \cdot 3 = 27 \equiv 5 \mod 11$$

$$a^{4} = a^{3} \cdot a = 5 \cdot 3 = 15 \equiv 4 \mod 11$$

$$a^{5} = a^{4} \cdot a = 4 \cdot 3 = 12 \equiv 1 \mod 11$$

From the last line it follows that ord(3) = 5.

$$a^{6} = a^{5} \cdot a \equiv 1 \cdot a \equiv 3 \mod 11$$

$$a^{7} = a^{5} \cdot a^{2} \equiv 1 \cdot a^{2} \equiv 9 \mod 11$$

$$a^{8} = a^{5} \cdot a^{3} \equiv 1 \cdot a^{3} \equiv 5 \mod 11$$

$$a^{9} = a^{5} \cdot a^{4} \equiv 1 \cdot a^{4} \equiv 4 \mod 11$$

$$a^{10} = a^{5} \cdot a^{5} \equiv 1 \cdot 1 \equiv 1 \mod 11$$

$$a^{11} = a^{10} \cdot a \equiv 1 \cdot a \equiv 3 \mod 11$$

the powers of *a* run through the sequence $\{3, 9, 5, 4, 1\}$

In case of the multiplicative group Z_p^* , where p is prime; $\therefore Z_p^* = \{1, 2, 3, ..., p-1\}$

e.g., $Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

To understand what's cyclic groups,

let's pick a number (a=3) and compute all its powers..

The result cycles over and over again.

Definition 8.2.4 Cyclic Group

A group G which contains an element α with maximum order $ord(\alpha) = |G|$ is said to be cyclic. Elements with maximum order are called primitive elements or generators.

Example We want to check whether a = 2 happens to be a primitive element of $\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$

a = 2 $a^6 \equiv 9 \mod 11$ $a^2 = 4$ $a^7 \equiv 7 \mod 11$ $a^3 = 8$ $a^8 \equiv 3 \mod 11$ $a^4 \equiv 5 \mod 11$ $a^9 \equiv 6 \mod 11$ $a^5 \equiv 10 \mod 11$ $a^{10} \equiv 1 \mod 11$

 $\operatorname{ord}(a) = 10 = |\mathbb{Z}_{11}^*|.$

Note that the cardinality of the group is $|\mathbb{Z}_{11}^*| = 10$.

Let's look again at all the elements that are generated by powers of two.
i | 1 2 3 4 5 6 7 8 9 10

✓ The powers of a = 2 actually generate all elements of the group Z_{11}^*

ECE5632 - Spring 2024-Dr. Farah Raad

Cyclic Groups

$Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$

✤ It is important to stress that the number 2 is not necessarily a generator in other cyclic groups $\mathbb{Z}_7^*, \text{ ord}(2) = 3$

The element 2 is thus not a generator in that group.

> Cyclic Groups are the basis of several cryptosystems.

• For every prime p, (Z_p^*, \times) is a cyclic group.

Theorem 8.2.2 For every prime p, (\mathbb{Z}_p^*, \cdot) is an abelian finite cyclic group.

Theorem 8.2.3

Let G be a finite group. Then for every $a \in G$ *it holds that:*

1.
$$a^{|G|} = 1$$

2. $ord(a)$ divides $|G|$

Theorem 8.2.3 Let G be a finite group. Then for every $a \in G$ it holds that: 1. $a^{|G|} = 1$ 2. ord(a) divides |G|

> Property 1: Proof using Fermat's little theorem for Z_p^* a^p = a mod p

Theorem 8.2.3 Let G be a finite group. Then for every $a \in G$ it holds that: 1. $a^{|G|} = 1$

2. ord(a) divides |G|

> Property 2: example using Z_{11}^* *

$$|Z_{11}^*| = 10$$

Possible orders $\in \{1, 2, 5, 10\}$

- How many primitive elements (i.e., generators) do we have?
- ✓ Four elements: 2, 6, 7, 8.
 - The only element orders in this group are 1, 2, 5, and 10, since these are the only integers that divide 10.

ord(1)

ord(6)

ord(7)

= 1

= 10

=

ord(8) = 10

ord(9) = 5

ord(10) = 2

10

ord(2) = 10

ord(3) = 5

ord(4) = 5

ord(5) = 5

How is this related to DHKE?

✓ Cyclic groups make good **Discrete Logarithm Problems**.

Definition: Discrete Logarithm Problem (DLP) Given a prime p, an element $\beta \in Z_p^*$, and the generator α , find x such that; $\alpha^x \equiv \beta \mod p$

e.g., In DHKE, attackers know p, α , A, B However, finding K_{AB}= α^{ab} is a hard problem.

Diffie-Hellman Problem (DHP)

Especially with a large p, attackers need to compute $log_{\alpha}B \mod p$.

ECE5632 - Spring 2024-Dr. Farah Raad

Discrete Logarithm Problem (DLP)

Definition 8.3.1 Discrete Logarithm Problem (DLP) in \mathbb{Z}_p^* *Given is the finite cyclic group* \mathbb{Z}_p^* *of order* p - 1 *and a primitive element* $\alpha \in \mathbb{Z}_p^*$ *and another element* $\beta \in \mathbb{Z}_p^*$. *The DLP is the problem of determining the integer* $1 \le x \le p - 1$ *such that:*

 $\alpha^x \equiv \beta \mod p$

 $x = \log_{\alpha} \beta \mod p$.

Discrete Logarithm Problem (DLP)

In other words...

If x is known, it's computationally easy to get $\alpha^x \equiv \beta \mod p$ However, for large parameters, it's very difficult to get $\log_{\alpha} \beta \mod p$

This forms a one-way function.

e. g., Z_{47}^* , $\beta = 41$, $\alpha = 5$ Find x such that $5^x \equiv 41 \mod 47$. Using brute force, x = 15. $2^x \equiv 36 \mod 47$

By using a brute-force attack, we obtain a solution for x = 17

Example: mod 7

> 3 is a **primitive element** or **generator** under the **multiplication** operation

 3^1 = 3 mod 7 $3^2 = 9$ = 2 mod 7 $3^3 = 27$ = 6 mod 7 $3^4 = 81$ = 4 mod 7 $3^5 = 243$ = 5 mod 7 $3^6 = 729$ = 1 mod 7

Example: mod 7

```
>>> for i in range(1,7):
... print 3, "**", i, "= ", (3**i) % 7, "mod 7"
...
3 ** 1 = 3 mod 7
3 ** 2 = 2 mod 7
3 ** 3 = 6 mod 7
3 ** 4 = 4 mod 7
3 ** 5 = 5 mod 7
3 ** 6 = 1 mod 7
```


$$\alpha = 3$$

 $DLP: 3^{x} = 4 \mod 7 \qquad x = 4$

DLP: $3^x = 1 \mod 7$

ECE5632 - Spring 2024-Dr. Farah Raad

Concept of Encryption using DLP

Diffie-Hellman Problem (DHP)

Attackers know p, α , A, B Attackers want K_{AB}= α^{ab}

> Attacker's possible steps to solve DHP:

- 1. Compute $a = \log_{\alpha} A \mod p$
- 2. Compute B^a=K_{AB} mod p

For attackers, step 1 is computationally a very hard problem if p is large enough >1024 bits.

Security of DHKE

> DHKE alone is vulnerable to active attacks.

- i.e., the protocol can be defeated if the attacker can modify the messages or generate false messages.
- So, digital signatures and public-key certificates are used to overcome this vulnerability.

> Passive attacks.

- **Examples:**
 - Exhaustive search
 - Index-calculus algorithm
 - Baby-step giant-step algorithm
 - Pollard's rho algorithm
 - Pohlig–Hellman algorithm

To overcome, use large p

Thank You!

See You next Lectures!! Any Question?

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt Tel:+202383711146 Fax:+20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline:16672 Website: www.msa.edu.eg

