Cryptography ECE 5632 Sheet 5

Spring 2024

Problem 1

Compute the Euler function $\phi(m)$ for m = 10, 11, 15, 18, and 30.

Problem 2

Let x = 358703 and y = 611939. Answer the following:

- (a) Compute $\phi(27)$.
- (b) Compute $y^{-2} \mod 17$.
- (c) Is it possible to compute $x^{-1} \mod 27$? Why?
- (d) If you know that both x and y are primes, what are $\phi(x)$ and $\phi(y)$?

Problem 3

Using the basic form of Euclid's algorithm, compute the greatest common divisor of:

- (a) 7469 and 2464
- (b) 2689 and 4001
- (c) 654321 and 123456

Show every iteration step in detail of Euclid's algorithm.

Problem 4

Compute the inverse $a^{-1} \mod n$ with Fermat's Theorem (if applicable) or Euler's Theorem:

- (a) a = 4, n = 7
- (b) a = 5, n = 12
- (c) a = 6, n = 13

Problem 5

Using Fermat's theorem, find $3^{201} \mod 11$.

Problem 6

Use Fermat's theorem to find a number x between 0 and 36 with x^{145} equivalent to 7 modulo 37.

Problem 7

Using the extended Euclidean algorithm, find the multiplicative inverse of:

- (a) $24140 \mod 40902$
- (b) 550 mod 1769

Problem 8

Using the following properties: if gcd(m, n) = 1 then $\phi(mn) = \phi(m)\phi(n)$, if p is prime, then $\phi(p^i) = p^i - p^{i-1}$, if p is prime, $\phi(p) = p - 1$, Determine the following:

- (a) $\phi(27)$
- (b) $\phi(231)$
- (c) $\phi(41)$
- (d) $\phi(440)$