

Cryptography ECE5632 - Spring 2024

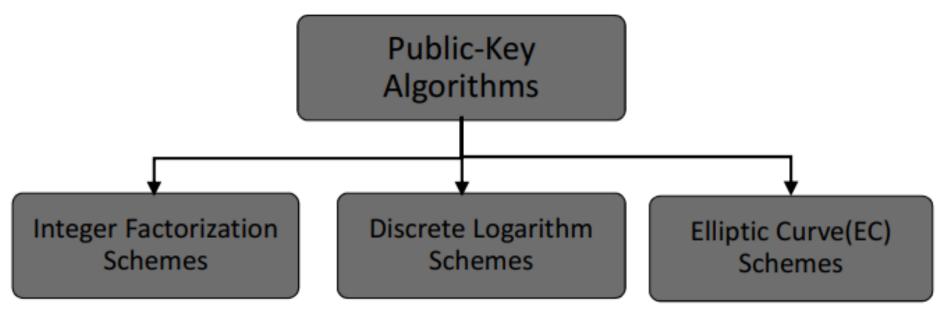
Lecture 8B

Dr. Farah Raad

Lecture Topic

Digital Signature

PKC Algorithms: Three Families



e.g.

· RSA algorithm.

e.g.:

- Diffie–Hellman key exchange.
- ElGamal encryption.
 - Digital Signature Algorithm (DSA).

e.g.:

- EC Diffie

 Hellman key exchange (ECDH).
- EC Digital Signature Algorithm (ECDSA).

Security Services

The objectives of a security systems are called security services.

There are many security services. Most importantly:

- Confidentiality: Information is kept secret from all but the authorized parties.
- Message Authentication: The sender of a message is authentic.
- Message Integrity: Message has not been modified during transmission.
- **Nonrepudiation**: The sender of a message can't deny the creation of the message.

Intro to Digital Signature

So far we assumed two honest people and an attacker in between.

We securely share a secret key and encrypt data in between.

But, what if ...

Our goal: Verify the authenticity of a sender.

Intro to Digital Signature

- > Alice orders a pink car from the car salesmen Bob
- After seeing the pink car, Alice states that she has never ordered it:
- How can Bob prove towards a judge that Alice has ordered a pink car? (And that he did not fabricate the order himself)
 - ☐ Symmetric cryptography fails because both Alice and Bob can be malicious
 - ☐ Can be achieved with public-key cryptography

Intro to Digital Signature

Conventionally, handwritten signatures are used to verify authenticity.

CONTRACT

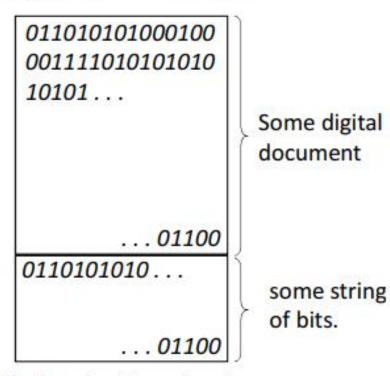
bla bla bla . . . bla bla bla . . .

Thorley

The unique signature is simply added to the document.

It works.

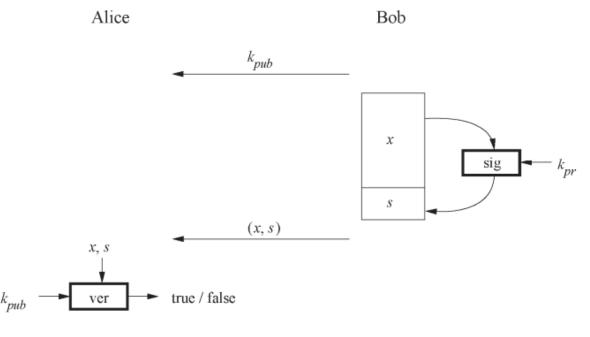
Digitally, things are a bit different.



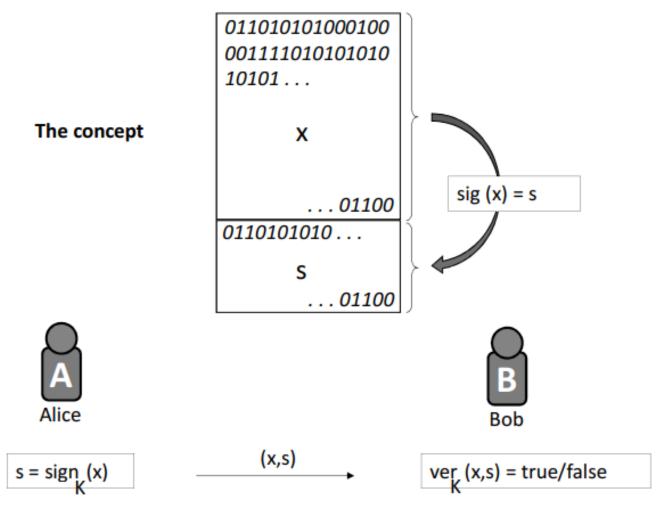
Unlike handwritten signatures, this can be easily faked.

Basic Concept of Digital Signatures

- For a given message x, a digital signature is appended to the message (just like a conventional signature).
- ➤ Only the person with the private key should be able to generate the signature.
- ➤ The signature must change for every document.
- ⇒The signature is realized as a function with the message x and the private key as input.
- ⇒The public key and the message x are the inputs to the verification function.



Basic Concept of Digital Signatures



RSA Digital Signature

To generate the private and public key:

Use the same key generation as RSA encryption.

To generate the signature:

"encrypt" the message x with the private key

$$s = sig_{K_{priv}}(x) = x^d \mod n$$

Append s to message x

To verify the signature:

"decrypt" the signature with the public key

If x=x', the signature is valid

$$K_{prA} = d$$

 $K_{pubA} = (n,e)$

$$s = sig_{K_{prA}}(x) \equiv x^d \mod n$$

(n , e)

$$ver_{pubA}(x,s)$$

$$s^e \equiv x' \mod n$$

if $x = x' \rightarrow \text{valid signature}$ If $x \neq x' \rightarrow \text{invalid signature}$

RSA Digital Signature: Example

Suppose Bob wants to send a signed message (x = 4) to Alice using RSA signature. Given p = 3 and q = 11. Compute signature as the sender and verify it as the receiver.

Alice

Bob

1. choose
$$p = 3$$
 and $q = 11$

2.
$$n = p \cdot q = 33$$

3.
$$\Phi(n) = (3-1)(11-1) = 20$$

4. choose
$$e = 3$$

$$5. d \equiv e^{-1} \equiv 7 \mod 20$$

$$(n,e)=(33,3)$$

(x,s)=(4,16)

compute signature for message

$$x = 4$$
:

$$s = x^d \equiv 4^7 \equiv 16 \mod 33$$

verify:

$$x' = s^e \equiv 16^3 \equiv 4 \mod 33$$

 $x' \equiv x \mod 33 \Longrightarrow \text{ valid signature}$

Key Generation for Elgamal Digital Signature

- 1. Choose a large prime *p*.
- 2. Choose a primitive element α of \mathbb{Z}_p^* or a subgroup of \mathbb{Z}_p^* .
- 3. Choose a random integer $d \in \{2, 3, \dots, p-2\}$.
- 4. Compute $\beta = \alpha^d \mod p$.

The public key is now formed by $k_{pub} = (p, \alpha, \beta)$, and the private key by $k_{pr} = d$.

Elgamal Signature Generation

- 1. Choose a random ephemeral key $k_E \in \{0, 1, 2, ..., p-2\}$ such that $gcd(k_E, p-1) = 1$.
- 2. Compute the signature parameters:

$$r \equiv \alpha^{k_E} \mod p,$$

$$s \equiv (x - d \cdot r) k_E^{-1} \mod p - 1.$$

Elgamal Signature Verification

1. Compute the value

$$t \equiv \beta^r \cdot r^s \bmod p$$

2. The verification follows from:

$$t \begin{cases} \equiv \alpha^x \mod p & \Longrightarrow \text{ valid signature} \\ \not\equiv \alpha^x \mod p & \Longrightarrow \text{ invalid signature} \end{cases}$$

(β,p,α)

Choose prime p Choose primitive element α $k_{pr} = d \in \{2,...,p-2\}$ $k_{pub} = \beta \equiv \alpha^d \mod p$

x, (r,s)

ephemeral key $k_E \in \{2,...,p-2\}$, such that $gcd(k_E,p-1)=1$

 $r \equiv \alpha^{K_E} \mod p$ $s \equiv (x - d.r) K_E^{-1} \mod p-1$

Verify $t \equiv \beta^r r^s \mod p$

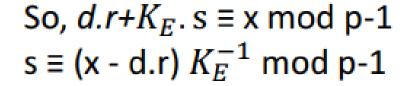
If $t \equiv \alpha^x \mod p \rightarrow \text{valid sign}$ If $t \not\equiv \alpha^x \mod p \rightarrow \text{invalid sign}$

Proof of correctness:

$$\beta^r r^s \equiv (\alpha^d)^r (\alpha^{K_E})^s \mod p$$

 $\equiv \alpha^{d.r + K_E.s} \mod p \equiv \alpha^s \mod p$

Let $a^m = a^{q(p-1)+r} = (a^q)^{p-1}a^r$ From Fermat's Little Theorem, $(a^q)^{p-1} \equiv 1 \mod p$ $a^m \mod p \equiv a^r \mod p$ Then $a^m \mod p \equiv a^{m \mod p-1} \mod p$



ElGamal Digital Signature: Example

Bob wants to send a message to Alice. This time, it should be signed with the Elgamal digital signature scheme.

Alice

$(p,\alpha,\beta) = (29,2,7)$

Bob

- 1. choose p = 29
- 2. choose $\alpha = 2$
- 3. choose d = 12
- 4. $\beta = \alpha^d \equiv 7 \mod 29$

compute signature for message x = 26:

choose $k_E = 5$, note that gcd(5,28) = 1

 $r = \alpha^{k_E} \equiv 2^5 \equiv 3 \mod 29$

 $s = (x - dr)k_E^{-1} \equiv (-10) \cdot 17 \equiv$

26 mod 28

(x,(r,s))=(26,(3,26))

$$t = \beta^r \cdot r^s \equiv 7^3 \cdot 3^{26} \equiv 22 \mod 29$$

 $\alpha^x \equiv 2^{26} \equiv 22 \mod 29$
 $t \equiv \alpha^x \mod 29 \Longrightarrow \text{ valid signature}$

Presentation Topics

- ➤ Whirlpool Hash Function
- ➤ Open-PGP CFB mode of operation
- >Attacks against Open-PGP CFB mode of operation
- ➤ Homomorphic Encryption Algorithms
- ➤ Secret Sharing Protocols
- ➤ Chosen-prefix collision attack on SHA-1 Hash function

Thank You!

See You next Lectures!! **Any Question?**

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt

Tel:+202383711146 **Fax:** +20238371543 **Postal code:** 12451 Email:info@msa.eun.eg Hotline:16672 Website: www.msa.edu.eg

