

Cryptography ECE5632 - Spring 2025

Lecture 7A

Dr. Farah Raad

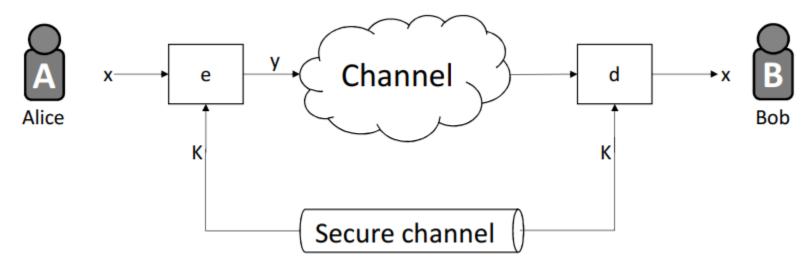
Lecture Topic

Introduction to Public-Key Cryptography (PKC)

Symmetric Cryptography Revisited

> Principle of Symmetric-Key encryption:

- The same secret key K is used for encryption and decryption
- Encryption and Decryption are very similar (or even identical) functions



X: plaintext Y: ciphertext K: key

We have some problems; key distribution, number of keys, etc.

Symmetric Cryptography Revisited

> Symmetric Cryptography: Analogy

Safe with a strong lock, only Alice and Bob have a copy of the key

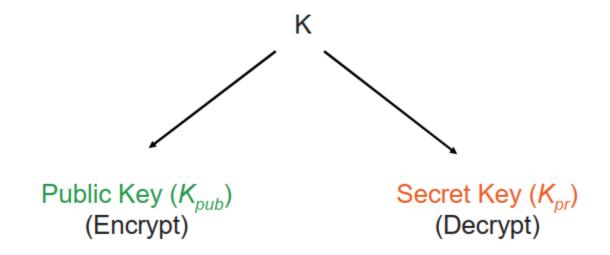
- Alice encrypts: locks message in the safe with her key
- Bob decrypts: uses his copy of the key to open the safe

Principles of Asymmetric Cryptography

Idea behind Asymmetric Cryptography

Asymmetric (Public-Key) Cryptography

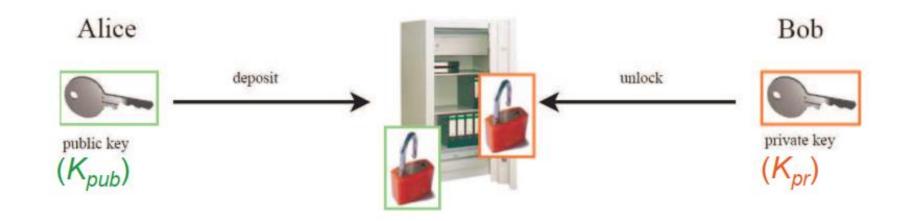
➤ Principle: "Split up" the key



✓ During the key generation, a key pair Kpub and Kpr is computed

Asymmetric (Public-Key) Cryptography

Asymmetric Cryptography: Analogy

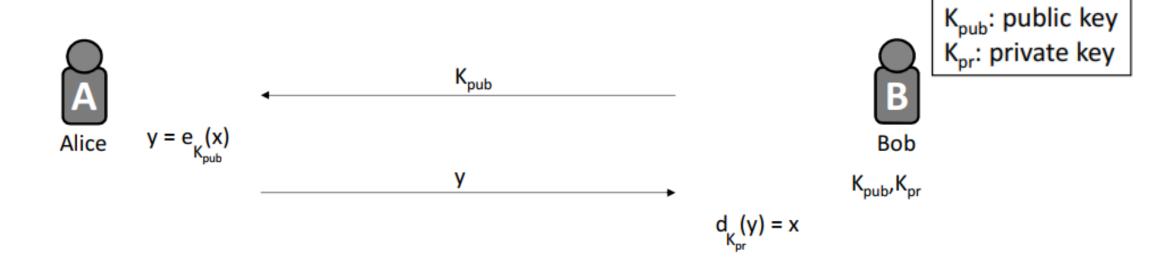


Safe with public lock and private lock:

- Alice deposits (encrypts) a message with the not secret public key Kpub
- Only Bob has the secret private key Kpr to retrieve (decrypt) the message

Asymmetric (Public-Key) Cryptography

➤ Basic protocol for Public-Key encryption:



✓ To study e() and d() .. more Math is needed...

Essential Number Theory for PKC

- > Compute the greatest common divisor gcd (ro, r1) of two integers ro and r1
- gcd is easy for small numbers:
- 1. factor roand r1
- 2. gcd = highest common factor

→ The gcd is the product of all common prime factors:

$$2 \cdot 3 = 6 = gcd (30,84)$$

* But: Factoring is complicated (and often infeasible) for large numbers

Such method doesn't work with large numbers, i.e., the case of PKC. We need the EA.

Efficient*
(faster, less complex)

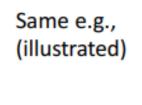
Basic idea: $gcd(r_0, r_1) = gcd(r_0 \mod r_1, r_1)$... we simply reduce the problem. = $gcd(r_1, r_0 \mod r_1)$

Example 1: $r_0 = 84$, $r_1 = 30$

$$gcd(84, 30) = gcd(84 \mod 30, 30) = gcd(24, 30)$$

= $gcd(30 \mod 24, 24) = gcd(6, 24) = 6$
= $gcd(24 \mod 6, 6) = gcd(0, 6)$

Terminate once a zero remainder is reached; gcd is the last remainder.



$$r_0$$
 r_1 r_2
 $84 = 2.30 + 24$
 $30 = 1.24 + 6$ \rightarrow gcd (84, 30) = 6
 $24 = 4.6 + 0$... zero remainder reached.

Example 2: $r_0 = 27$, $r_1 = 21$

 $gcd(r_0, r_1)$ for $r_0 = 27$ and $r_1 = 21$

21 6

6 6 6 3

3 3

 $gcd(27, 21) = gcd(1 \cdot 21 + 6, 21) = gcd(21, 6)$

 $gcd(21, 6) = gcd(3 \cdot 6 + 3, 6) = gcd(6, 3)$

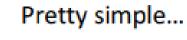
 $gcd(6, 3) = gcd(2 \cdot 3 + 0, 3) = gcd(3, 0) = 3$

➤ Note: very efficient method even for long numbers: The complexity grows **linearly** with the number of bits

Example 3: $r_0 = 973$, $r_1 = 301$

gcd(973, 301)

$$r_0$$
 r_1 r_2
 $973 = 3.301 + 70$
 $301 = 4.70 + 21$
 $70 = 3.21 + 7$ $gcd(973, 301) = 7$
 $21 = 3.7 + 0$... zero remainder reached.



Extended Euclidean Algorithm (EEA)

Goal: rewrite $gcd(r_0, r_1) = s \cdot r_0 + t \cdot r_1$

Why: To compute modular inverses of large numbers.

How: Using regular EA for the LHS & the extension

Extended Euclidean Algorithm (EEA)

- Extend the Euclidean algorithm to find modular inverse of r₁ mod r₀
- EEA computes s,t, and the gcd : $gcd(r_0,r_1) = s \cdot r_0 + t \cdot r_1$
- Take the relation mod r₀

$$s \cdot r_0 + t \cdot r_1 = 1$$

$$s \cdot 0 + t \cdot r_1 \equiv 1 \mod r_0$$

$$r_1 \cdot t \equiv 1 \mod r_0$$

- \rightarrow Compare with the definition of modular inverse: t is the inverse of $r_1 \mod r_0$
- Note that $gcd(r_0, r_1) = 1$ in order for the inverse to exist
- Recursive formulae to calculate s and t in each step
 - → "magic table" for r, s, t and a quotient q to derive the inverse with pen and paper

Extended Euclidean Algorithm

How to compute the modular inverse using the Extended Euclidean Algorithm:

٠.							
	i	$q_i = \left\lfloor \frac{r_{i-2}}{r_{i-1}} \right\rfloor$	$\mathbf{s}_i = \\ \mathbf{s}_{i-2} - \mathbf{q}_{i-1} \cdot \mathbf{s}_{i-1}$	$t_i = t_{i-2} - q_{i-1} \cdot t_{i-1}$	$r_i = r_{i-2} - q_{i-1} \cdot r_{i-1}$		
	0		$s_0 = 1$	$t_0 = 0$	r_0		
	1		$s_1 = 0$	$t_1 = 1$	r_1		
	2	$q_1 = \left\lfloor \frac{r_0}{r_1} \right\rfloor$	$s_2 = s_0 - q_1 \cdot s_1$	$t_2 = t_0 - q_1 \cdot t_1$	$r_2 = r_0 - q_1 \cdot r_1$		
	3	$q_2 = \left\lfloor \frac{r_1}{r_2} \right\rfloor$	$s_3 = s_1 - q_2 \cdot s_2$	$t_3 = t_1 - q_2 \cdot t_2$	$r_3 = r_1 - q_2 \cdot r_2$		
	:	i	i i	i i	i.		

For initialization (steps $i \in \{0,1\}$, cell values are predetermined as proven before.

For $i \ge 2$, compute the q_i , s_i , t_i , r_i columns.

For each iteration *i*, check:

If $r_i=1$ is reached, then $gcd(r_0,r_1)=r_i=1$. Then mult. inverse of r_1 mod r_0 exists and equals t_i . Stop.

<u>Else</u>, if $r_i=0$ is reached, then $gcd(r_0,r_1)=r_{i-1}$. Then mult. inverse of $r_1 \mod r_0$ doesn't exist. Stop.

Extended Euclidean Algorithm (EEA)

i.e., the result of $gcd(r_0, r_1)$.

How does that lead to modulo inverse?

To compute a-1 mod n:

gcd(n, a) =
$$r_1$$
 = s·n + t·a = 1 (condition for inverse existence)
Then s·0 + t·a = 1 mod n (mod n for both sides)
t·a = 1 mod n
t = a^{-1} mod n

Extended Euclidean Algorithm (EEA)

Example:

- Calculate the modular Inverse of 12 mod 67:
- From magic table follows $-5 \cdot 67 + 28 \cdot 12 = 1$
- Hence 28 is the inverse of 12 mod 67.

• Check	$28 \cdot 12 = 336 \equiv 1 \mod 67$	√
Check:	$28 \cdot 12 = 330 = 111100107$	V

i	q_{i-1}	r_i	s_i	t_i
2	5	7	1	-5
3	1	5	-1	6
4	1	2	2	-11
5	2	1	-5	28

Multiplicative Inverse in $GF(2^m)$

Find the multiplicative inverse of x^3+x+1 in $GF(2^4)$ with $P(x)=x^4+x+1$

Using EEA:

$$x^4+x+1=(x)(x^3+x+1)+(x^2+1)\dots x^2+1=(x^4+x+1)+(x)(x^3+x+1)$$

 $(x^3+x+1)=(x)(x^2+1)+1 \dots 1=(x)(x^2+1)+(x^3+x+1)$
 $=(x)(x^4+x+1)+(x^2+1)(x^3+x+1)$

 $[(x)(x^4+x+1) + (x^2+1)(x^3+x+1)] \mod P(x) \rightarrow \text{multiplicative inverse} = x^2+1$

Multiplicative Inverse in $GF(2^m)$

Example We are looking for the inverse of $A(x) = x^2$ in the finite field $GF(2^3)$ with $P(x) = x^3 + x + 1$. The initial values for the t(x) polynomial are: $t_0(x) = 0$, $t_1(x) = 1$

Iteration	$n r_{i-2}(x)$	$= [q_{i-1}(x)] r_{i-1}(x) + [r_i(x)]$	$] t_i(x) $
2	$x^3 + x + 1$	$1 = [x]x^2 + [x+1]$	$t_2 = t_0 - q_1 t_1 = 0 - x 1 \equiv x$
3	x^2	= [x](x+1) + [x]	$t_3 = t_1 - q_2 t_2 = 1 - x(x) \equiv 1 + x^2$
4	x+1	= [1]x + [1]	$t_4 = t_2 - q_3 t_3 = x - 1(1 + x^2)$
			$t_4 \equiv 1 + x + x^2$
5	x	= [x] 1 + [0]	Termination since $r_5 = 0$

$$A^{-1}(x) = t(x) = t_4(x) = x^2 + x + 1.$$

Multiplicative Inverse in $GF(2^m)$

Here is the check that t(x) is in fact the inverse of x^2 , where we use the properties that $x^3 \equiv x + 1 \mod P(x)$ and $x^4 \equiv x^2 + x \mod P(x)$:

$$t_4(x) \cdot x^2 = x^4 + x^3 + x^2$$

$$\equiv (x^2 + x) + (x + 1) + x^2 \mod P(x)$$

$$\equiv 1 \mod P(x)$$

For PKC, it's important to know how many numbers in Z_m that are relatively prime to m.

Why and how?

Why: Will be clear later once we study actual PK cryptosystems.

How: Using Euler's Phi function simply counts these numbers.

Manually counting may work for small numbers.

e.g., manually count the numbers in Z_6 that are relatively prime to 6. $\rightarrow \Phi(6) = 2$

For large numbers, we use Euler's Phi function.

➤ For PKC, it's important to know how many numbers in Z_mthat are relatively prime to m.

Why and how?

Why: Will be clear later once we study actual PK cryptosystems.

How: Using Euler's Phi function simply counts these numbers.

- ➤ New problem, important for public-key systems, e.g., RSA: Given the set of the m integers {0, 1, 2, ..., m-1},
- > How many numbers in the set are relatively prime to m?

Answer: Euler's Phi function Φ(m)

Example for the sets {0,1,2,3,4,5} (m=6),

$$gcd(0,6) = 6$$

 $gcd(1,6) = 1$ \leftarrow $gcd(2,6) = 2$
 $gcd(3,6) = 3$
 $gcd(4,6) = 2$
 $gcd(5,6) = 1$ \leftarrow

 \rightarrow 1 and 5 relatively prime to m=6, hence $\phi(6) = 2$

and {0,1,2,3,4} (m=5)

$$gcd(0,5) = 5$$

 $gcd(1,5) = 1$ \leftarrow
 $gcd(2,5) = 1$ \leftarrow
 $gcd(3,5) = 1$ \leftarrow
 $gcd(4,5) = 1$ \leftarrow

$$\rightarrow \phi(5) = 4$$

Testing one gcd per number in the set is extremely slow for large m.

- Manually counting may work for small numbers.
- e.g., manually count the numbers in Z_6 that are relatively prime to 6. $\rightarrow \Phi(6) = 2$
- ✓ For large numbers, we use Euler's Phi function.

- If canonical factorization of m known:
 (where p_i primes and e_i positive integers)
- then calculate Phi according to the relation

$$m = p_1^{e_1} \cdot p_2^{e_2} \cdot \dots \cdot p_n^{e_n}$$

$$\Phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i - 1})$$

- Phi especially easy for $e_i = 1$, e.g., $m = p \cdot q \rightarrow \Phi(m) = (p-1) \cdot (q-1)$
- Example m = 899 = 29 · 31: Φ(899) = (29-1) · (31-1) = 28 · 30 = 840
- Note: Finding $\Phi(m)$ is computationally easy if factorization of m is known (otherwise the calculation of $\Phi(m)$ becomes computationally infeasible for large numbers)

How to compute $\Phi(m)$ for a large m?

Let m have the following factorization form:

$$m=p_1^{e_1}\cdot p_2^{e_2}\cdot \ldots \cdot p_n^{e_n},$$

Where p_i are distinct prime numbers and e_i are positive integers, then

$$\Phi(m) = \prod_{i=1}^{n} (p_i^{e_i} - p_i^{e_i-1}).$$

e.g. 1) compute $\Phi(m)$ for m = 240

m = 16·15 =
$$2^4 \cdot 3^1 \cdot 5^1$$

= $p_1^{e_1} p_2^{e_2} p_3^{e_3}$

$$\Phi(240) = \prod_{i=1}^{3} (p_i^{e_i} - p_i^{e_{i-1}}) = (2^4 - 2^3)(3^1 - 3^0)(5^1 - 5^0)$$
$$= 8 \cdot 2 \cdot 4 = 64$$

e.g. 2) compute $\Phi(m)$ for m = 100

Euler's Theorem

Used in public-key cryptography.

Euler's Theorem:

Let a and m be integers with gcd(a,m) = 1, then:

$$a^{\Phi(m)} \equiv 1 \mod m$$

 \Box e.g., Let's check with m = 12 and a = 5.

$$\Phi(12) = \Phi(2^2 \cdot 3) = (2^2 - 2^1)(3^1 - 3^0) = (4 - 2)(3 - 1) = 4$$

$$5^{\Phi(12)} = 5^4 = 25^2 = 625 \equiv 1 \mod 12$$

Fermat's Little Theorem

> Fermat's Little Theorem:

- Given a **prime** p and an **integer** a: $a^p \equiv a \pmod{p}$
- · Can be rewritten as

$$a^{p-1} \equiv 1 \pmod{p}$$

- Use: Find modular inverse, if p is prime. Rewrite to $a^{p-2} \equiv 1 \pmod{p}$
- Comparing with definition of the modular inverse $a(a^{-1}) \equiv 1 \mod m$
 - $\Rightarrow a^{-1} \equiv a^{p-2} \pmod{p}$ is the modular inverse modulo a prime p

Fermat's Little Theorem

> Fermat's Little Theorem:

Let a be an integer and p be a prime,

then: $a^p \equiv a \mod p$ so, $a^{p-1} \equiv 1 \mod p$ or, $a \cdot a^{p-2} \equiv 1 \mod p$ so, $a^{-1} \equiv a^{p-2} \mod p$

✓ e.g., Let's check with p = 7 and a = 2

$$a^{p-2} = 2^5 = 32 \equiv 4 \mod 7$$

$$2 \cdot 4 \equiv 1 \mod 7$$

Therefore, $2^{-1} \equiv 4 \mod 7$

Fermat's Little Theorem and Euler's Theorem

Fermat's little theorem = special case of Euler's Theorem

• for a prime **p**:
$$\Phi(p) = (p^1 - p^0) = p - 1$$

$$\Rightarrow$$
 Fermat: $a^{\Phi(p)} = a^{p-1} \equiv 1 \pmod{p}$

Notes:

If p is prime, then $\Phi(p) = p - 1$ if p and q are prime, then $\Phi(pq) = \Phi(p) \times \Phi(q)$

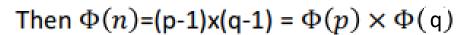
How to prove that $\Phi(pq) = \Phi(p) \times \Phi(q)$?

Since Z_n has (pq-1) positive integers.

Since integers that are not relatively prime to n are $\{p,2p,...(q-1)p\}$ and $\{q,2q,...(p-1)q\}$... i.e., (p-1) elements + (q-1) elements.

Then the number of integers in Z_n that are relatively prime to n = (pq-1) - [(p-1)+(q-1)]

i.e.,
$$pq - (p+q) +1$$



Thank You!

See You next Lectures!! Any Question?

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt

Tel:+202383711146 Fax: +20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline: 16672 Website: www.msa.edu.eg

