

Cryptography ECE5632 - Spring 2025

Lecture 6A

Dr. Farah Raad

The First British Higher Education in Egypt

The Party of Lat and the FT 99

MSA UNIVERSITY جامعة أكتوبر للعلوم الحديثة والآداب

The Advanced Encryption Standard (AES)

ECE5632 - Spring 2025-Dr. Farah Raad

The Advanced Encryption Standard (AES)

> AES is the most widely used symmetric cipher today.

≻ Found in every web browser, in banking machines, WiFi routers, etc ...

***** The requirements for all AES candidate submissions were:

- Block cipher with **128-bit block size**
- Three supported key lengths: 128, 192 and 256 bit
- Security relative to other submitted algorithms
- Efficiency in software and hardware

The Advanced Encryption Standard (AES)

How does it work?

All internal operations of AES are based on Finite Fields.

Finite Fields (Galois Fields)

What's a **Field**?

Abstract (modern) algebra consists of three basic elements

- 1. Group
- 2. Ring
- 3. Field

1. Group

Group {G,+, -**}**: a set of elements, such that the following axioms are obeyed:

A1. Closure:

If a and b belong to G, then a o b is also in G.

A2. Associativity:

 $a \circ (b \circ c) = (a \circ b) \circ c$ for all a, b, c in G

A3. Identity element:

There is an element 0 in G such that $a \circ 0 = 0 \circ a = a$ for all a in G

A4. Inverse element:

For each a in G there is an element -a in G such that a o (-a) = (-a) o a = 0 A5. Commutativity:

 $a \circ b = b \circ a$ for all a, b in G

But we're interested in more than just +, -

Note: the generic operator • denotes either + or -

2. Ring

Ring $\{R,+,-,\times\}$: a set of elements such that the following axioms are obeyed:

<u>A1~A5</u>.

M1. Closure under multiplication: If a and b belong to R, then ab is also in R M2. Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R M3. Distributive laws: a(b + c) = ab + ac for all a, b, c in R (a + b)c = ac + bc for all a, b, c in R M4. Commutativity of multiplication: ab = ba for all a, b in R M5. Multiplicative identity: There is an element 1 in R such that a1 = 1a = a for all a in R M6. No zero divisors: If a, b in R and ab = 0, then either a = 0 or b = 0Still, we're interested in more than just +, -,×

3. Field

Field {F,+, $-,\times,()^{-1}$ }: a set of elements, such that the following axioms are obeyed: <u>A1~A5</u>.

<u>M1~M6</u>.

M7. Multiplicative inverse: For each a in F, except 0, there is an element a⁻¹ in F such that aa⁻¹=(a⁻¹)a=1.

Simply, it's a set of numbers which we can add, subtract, multiply, and invert, that obey A1~A5 & M1~M7.

Example: Which of the following are Fields? $(\mathbb{R}, \mathbb{C}), \mathbb{N}$

Finite Fields (Galois Fields)

> In crypto, we almost always need finite sets.

m: positive integer

Theorem: A finite field only exists if it has p^m elements.

p: prime integer

> Order or cardinality of the field: number of elements in GF

Examples:

1) There's a finite field with 11 elements. GF(11)

2) There's a finite field with 81 elements. GF(81) = GF(3⁴)

3) There's a finite field with 256 elements. GF(256) = GF(2⁸) ← The Galois field

4) Is the field with 12 elements a finite field?

Prime Number				
2	3	5	7	11
13	17	19	23	29
31	37	41	43	47
53	59	61	67	71
73	79	83	89	97

The Galois field specified in the AES standard.

Types of Finite Fields

Prime Field Arithmetic

The elements of a prime field GF(p) are the integers $\{0, 1, ..., p-1\}$

a) Add, subtract, multiply: $a \circ b \equiv c \mod p$ Note: the generic operator • here denotes either +, -, or ×

b) Inversion: a ∈ GF(p) ; the inverse a⁻¹ must satisfy a·a⁻¹ ≡ 1 mod p a⁻¹ can be computed using the extended Euclidian Algorithm.

11

The elements of GF(2^m) are polynomials.

$$a_{m-1}x^{m-1} + \ldots + a_1x + a_0 = A(x) \in GF(2^m)$$

Coefficients $a_i \in GF(2) = \{0, 1\}$

Example:

$$GF(2^{3}) = GF(8)$$

$$A(x) = a_{2}x^{2} + a_{1}x + a_{0} = (a_{2}, a_{1}, a_{0})$$

$$GF(2^{3}) = \{0, 1, x, x+1, x^{2}, x^{2}+1, x^{2}+x, x^{2}+x+1\}$$

a) Add and subtract in GF(2^m):

$$C(x) = A(x) \circ B(x) = \sum_{i=0}^{m-1} c_i x^i, ci \equiv ai + bi \mod 2$$

Note: the generic operator \circ here denotes either +, -

Example: In GF(2³), $A(x) = x^2 + x + 1$, $B(x) = x^2 + 1$ Compute A(x) + B(x) $A(x) + B(x) = (1+1)x^2 + x + (1+1)$ $= 0x^2 + x + 0$ = x = A(x) - B(x) GF(2³)= { 0, 1, x, x+1, x², x²+1, x²+x, x²+x+1}

Note: Addition and subtraction in GF(2^m) are the same operations.

13

b) Multiplication in GF(2^m):

GF(2³)= { 0, 1, x, x+1, x², x²+1, x²+x, x²+x+1} Example: In GF(2³), A(x) = $x^2 + x + 1$, B(x) = $x^2 + 1$ Compute $A(x) \times B(x)$ $A(x) \times B(x) = (x^2 + x + 1)(x^2 + 1)$ $= x^{4} + x^{3} + x^{2} + x^{2} + x + 1$ $= x^4 + x^3 + (1+1)x^2 + x + 1$ $= x^4 + x^3 + x + 1$ Simple..? So, call this result $x^4 + x^3 + x + 1 = C'(x)$ **Solution:** Reduce C'(x) modulo a polynomial that behaves like a prime. i.e., a polynomial that <u>cannot be factored</u>. i.e., an irreducible polynomial. In the next example..

14

b) Multiplication in GF(2^m):

 $C(x) \equiv A(x) \times B(x) \mod P(x)$, where P(x) is an irreducible polynomial.

Example: Given the irreducible polynomial for $GF(2^3) P(x) = x^3 + x + 1$ $A(x) = x^2 + x + 1$, $B(x) = x^2 + 1$ Compute $A(x) \times B(x) \mod P(x)$

 $A(x) \times B(x) = x^4 + x^3 + x + 1 = C'(x)$

$$\begin{array}{c|c} x + 1 \\ x^{3} + x + 1 \end{array} \\ \hline x^{4} + x^{3} & + x + 1 \\ \underline{x^{4} + x^{2} + x} \\ x^{3} + x^{2} & + 1 \\ \underline{x^{3} + x + 1} \\ x^{2} + x \end{array} \\ \hline x^{2} + x \end{array} \\ \hline A(x) \times B(x) \ \text{mod} \ P(x) \equiv C(x)$$

Where did P(x) come from in the previous example??

Actually, for every finite field GF(2^m), there are several irreducible polynomials!

So, for a given finite field (e.g., GF(2³)), the computation result depends on P(x).

So, multiplication can't be done unless the irreducible polynomial is specified.

The AES standard <u>specifies</u> the irreducible polynomial: $P(x) = x^{8} + x^{4} + x^{3} + x + 1$

✓ How to test whether a P(x) is reducible or not?
 <u>https://www.youtube.com/watch?v=pHQ73N3n-ZU</u>

What about ()⁻¹?


```
c) Inversion in GF(2<sup>m</sup>):
```

The inverse A⁻¹(x) of an element A(x) \in GF(2^m) must satisfy: A(x) × A⁻¹(x) \equiv 1 mod P(x)

Extended Euclidian Algorithm.

Thank You!

See You next Lectures!! Any Question?

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt Tel:+202383711146 Fax:+20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline:16672 Website: www.msa.edu.eg

