

# Cryptography ECE5632 - Spring 2025

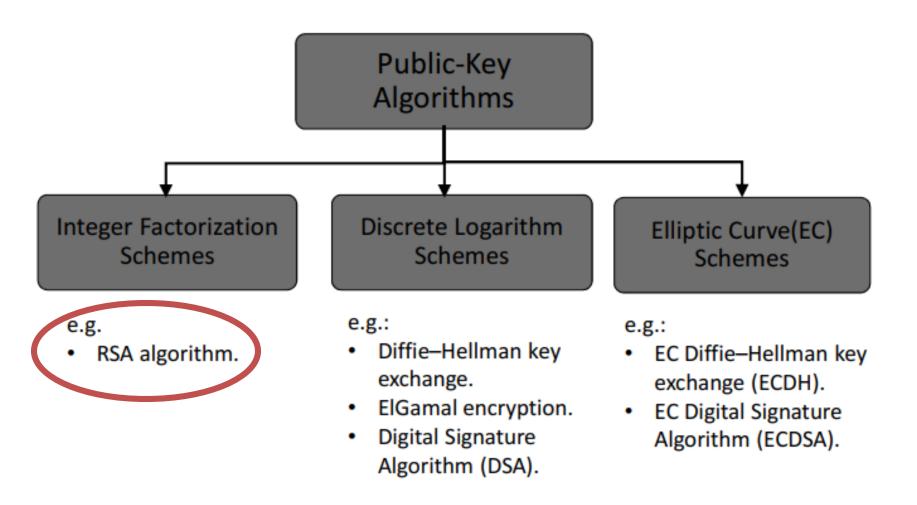
Lecture 7B

Dr. Farah Raad

## Lecture Topic

# RSA Algorithm & Diffie-Hellman Key

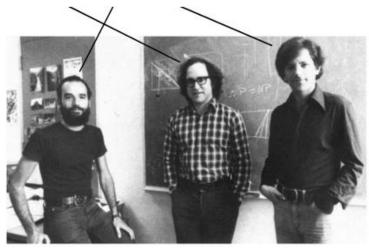
### PKC Algorithms: Three Families





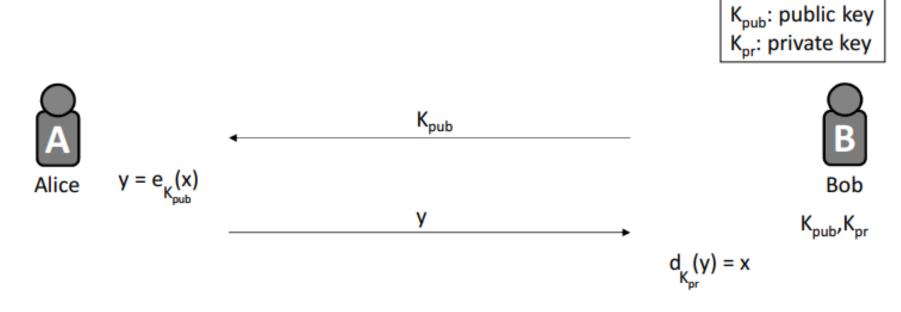
### ➤ Some History

- √ 1976: Public key cryptography first introduced:
  - Martin Hellman and Whitfield Diffie published their landmark publickey paper in 1976
- ✓ 1977: Rivest–Shamir–Adleman (RSA) proposed the asymmetric RSA cryptosystem algorithm



- ✓ Until now, RSA is the most widely use asymmetric cryptosystem although elliptic curve cryptography (ECC) becomes increasingly popular
- ✓ RSA is mainly used for two applications
  - Transport of (i.e., symmetric) keys
  - Digital signatures





- 1) How to encrypt/decrypt?
- 2) How to compute K<sub>pub</sub> and K<sub>pr</sub>?



### Encryption and Decryption

- ✓ RSA operations are done over the integer ring  $Z_n$  (i.e., arithmetic modulo n), where n = p \* q, with p, q being large primes
- ✓ Encryption and decryption are simply exponentiations in the ring
- ✓ In practice x, y, n and d are very long integer numbers ( $\geq$  1024 bits)

#### Definition

Given the public key  $(n,e) = k_{pub}$  and the private key  $d = k_{pr}$  we write

$$y = e_{k_{pub}}(x) \equiv x^e \mod n$$

$$x = d_{kpr}(y) \equiv y^d \mod n$$

where x, y  $\varepsilon$  Z<sub>n</sub>

We call  $e_{k_{pub}}()$  the encryption and  $d_{k_{pr}}()$  the decryption operation.



### Key Generation

✓ Like all asymmetric schemes, RSA has set-up phase during which the private and public keys are computed

#### Algorithm: RSA Key Generation

**Output**: public key:  $k_{pub} = (n, e)$  and private key  $k_{pr} = d$ 

- Choose two large primes p, q
- 2. Compute n = p \* q
- 3. Compute  $\Phi(n) = (p-1) * (q-1)$
- 4. Select the public exponent  $e \in \{1, 2, ..., \Phi(n)-1\}$  such that  $gcd(e, \Phi(n)) = 1$
- 5. Compute the private key d such that  $d * e \equiv 1 \mod \Phi(n)$
- **6. RETURN**  $k_{pub} = (n, e), k_{pr} = d$



#### **Remarks:**

- Choosing two large, distinct primes p, q (in Step 1) is non-trivial
- $gcd(e, \Phi(n)) = 1$  ensures that e has an inverse and, thus, that there is always a private key d

#### Notes:

- ✓ In practice, n is ≥ 1024 bits long.
- ✓ Strength of RSA with  $n = 2^{3072}$  is equivalent to AES128.
- ✓ Longer n means more security, but slower computation.
- ✓ p and q should differ in length by only a few digits . . . p, q ≥ 512 bits long





#### **Example: RSA with small numbers:**



Alice

Message x = 4





Bob

$$2. n = 33$$

3. 
$$\Phi(n)$$
= (p-1) · (q-1)

$$= 2 \cdot 10 = 20$$

4. Choose 
$$e = 3$$

5. 
$$d \equiv e^{-1} \equiv 7 \mod 20$$



$$x = d_{Kpr}(y) \equiv y^d \mod n$$
$$\equiv 31^7 \mod 33$$
$$\equiv 4 \mod 33$$

#### **Parameters Example**

Example of practical RSA parameters for n = 1024 ->

- $p = E0DFD2C2A288ACEBC705EFAB30E4447541A8C5A47A37185C5A9 \\ CB98389CE4DE19199AA3069B404FD98C801568CB9170EB712BF \\ 10B4955CE9C9DC8CE6855C6123_h$
- q = EBE0FCF21866FD9A9F0D72F7994875A8D92E67AEE4B515136B2 A778A8048B149828AEA30BD0BA34B977982A3D42168F594CA99  $F3981DDABFAB2369F229640115_{h}$
- $n = CF33188211FDF6052BDBB1A37235E0ABB5978A45C71FD381A91 \\ AD12FC76DA0544C47568AC83D855D47CA8D8A779579AB72E635 \\ D0B0AAAC22D28341E998E90F82122A2C06090F43A37E0203C2B \\ 72E401FD06890EC8EAD4F07E686E906F01B2468AE7B30CBD670 \\ 255C1FEDE1A2762CF4392C0759499CC0ABECFF008728D9A11ADF_h$
- $e = 40B028E1E4CCF07537643101FF72444A0BE1D7682F1EDB553E3 \\ AB4F6DD8293CA1945DB12D796AE9244D60565C2EB692A89B888 \\ 1D58D278562ED60066DD8211E67315CF89857167206120405B0 \\ 8B54D10D4EC4ED4253C75FA74098FE3F7FB751FF5121353C554 \\ 391E114C85B56A9725E9BD5685D6C9C7EED8EE442366353DC39_h$
- $d = C21A93EE751A8D4FBFD77285D79D6768C58EBF283743D2889A3 \\ 95F266C78F4A28E86F545960C2CE01EB8AD5246905163B28D0B \\ 8BAABB959CC03F4EC499186168AE9ED6D88058898907E61C7CC \\ CC584D65D801CFE32DFC983707F87F5AA6AE4B9E77B9CE630E2 \\ C0DF05841B5E4984D059A35D7270D500514891F7B77B804BED81_h$





#### **Proof of Correctness**

We need to prove that  $d_{Kpr}(e_{Kpub}(x)) = x$ 

i.e., prove that  $(x^e)^d \equiv x^{de} \mod n \equiv x \mod n$ 



## RSA Algorithm: Practical Consideration

RSA is a heavy user of exponentiation...

Encryption:  $y = x^e \mod n$ 

Decryption:  $x = y^d \mod n$ 

Problem: How to quickly exponentiate with extremely large numbers?

Solution: Using Square-and-Multiply Algorithm

|          | e.g., x <sup>26</sup> |                                |
|----------|-----------------------|--------------------------------|
| Square   | SQ                    | $x \cdot x = x^2$              |
| Multiply | MUL                   | $x \cdot x^2 = x^3$            |
|          | SQ                    | $x^3 \cdot x^3 = x^6$          |
|          | SQ                    | $x^6 \cdot x^6 = x^{12}$       |
|          | MUL                   | $x \cdot x^{12} = x^{13}$      |
|          | SQ                    | $x^{13} \cdot x^{13} = x^{26}$ |

Represent the exponent in binary; x<sup>11010</sup> Initially start with x<sup>1</sup>

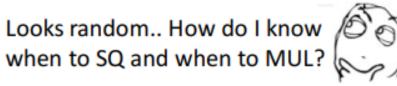
$$(x^{1})^{2} = x^{10}$$
  
 $(x^{10})x = x^{11}$   
 $(x^{11})^{2} = x^{110}$   
 $(x^{110})^{2} = x^{1100}$   
 $(x^{1100})x = x^{1101}$ 

$$(x^{1101})^2 = x^{11010}$$

Simply construct the binary exponent from left to right by shifting (SQ) and adding (MUL).

Note: MUL is only used for the 1 bits.







## **Security of RSA**

The RSA discussed so far is called schoolbook RSA.

It has several weaknesses:

- RSA is deterministic.
- y=x for x= 0, 1, −1.
- RSA is malleable.

A malleable cipher allows an attackers to modify the value of x without decrypting y. e.g., attacker wants to multiply x by s=2. But only has access to y and e. Then replacing y with  $s^ey$  leads to.. decryption:  $(s^ey)^d \equiv s^{ed}x^{ed} \equiv sx \mod n$ .

In practice, these weaknesses can be eliminated by using <u>padding</u>. i.e., Optimal Asymmetric Encryption Padding (OAEP)



## Security of RSA: Attacks

#### Attack possibilities against RSA:

- 1. Protocol attacks
- 2. Mathematical attacks. i.e., factoring the modulus.

The attackers knows n and e.

But can't compute d because p and q are unknown!

Longer n is more difficult to factor, but slower algorithm.

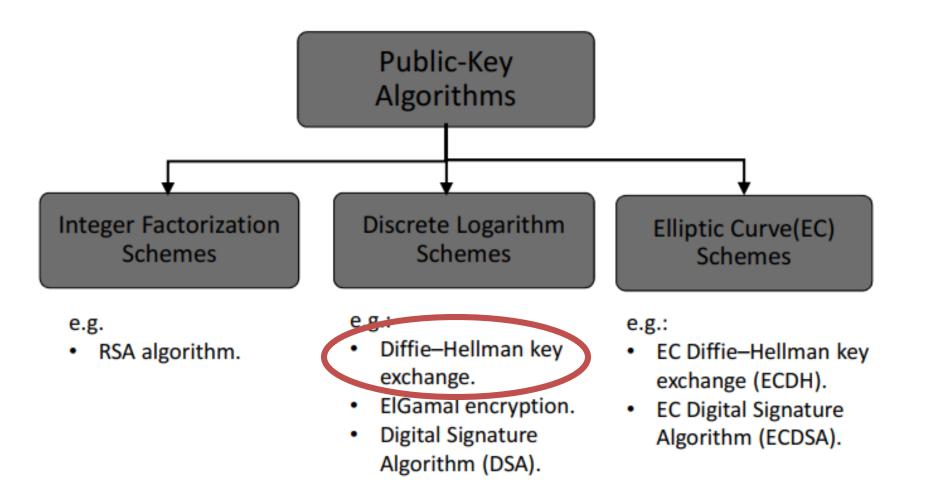
Minimum n size = 1024. Recommended 2048-4096.

3. Side-channel attacks.

Exploit info leaked from the processing power or time (i.e., physical channels )



### PKC Algorithms: Three Families





- > Proposed in 1976 by Whitfield Diffie and Martin Hellman
- Widely used, e.g. in Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol Security (IPSec)
- ➤ The Diffie—Hellman Key Exchange (DHKE) is a key exchange protocol and not used for encryption
- ➤ (For the purpose of encryption based on the DHKE, ElGamal can be used.)



#### Diffie-Hellman setup:

- 1. Choose a large prime p.
- 2. Choose an integer  $\alpha \in \{2,3,...,p-2\}$ .
- 3. Publish p and  $\alpha$ .

p is a large prime  $\geq$ 1024 bits long. We'll soon discuss the nature of  $\alpha$ .



Choose 
$$a = k_{pr,A} \in \{2,...,p-2\}$$
  
Compute  $A = k_{pub,A} \equiv \alpha^a \mod p$ 

K<sub>ΔR</sub>≡ B<sup>a</sup> mod p



Choose 
$$b = k_{pr,B} \in \{2,...,p-2\}$$
  
Compute  $B = k_{pub,B} \equiv \alpha^b \mod p$ 



As a result,  $K_{AB}$  is the shared secret. e.g., we can use the 128 MSB of  $K_{AB}$  as a key for AES128.

### **Essential idea:**

Choose two random secrets a and b

$$(\alpha^a)^b \mod p = (\alpha^b)^a \mod p$$

Both parties can calculate that value without sending secrets over the wire



Alice

Bob

Choose random private key 
$$k_{prA} = a \in \{1, 2, ..., p-1\}$$

Choose random private key 
$$k_{prB}=b \in \{1,2,...,p-1\}$$

Compute corresponding public key 
$$k_{pubA} = A = \alpha^a \mod p$$

Compute correspondig public key  $k_{pubB} = B = a^b \mod p$ 

Compute common secret 
$$k_{AB} = B^a = (\alpha^a)^b \mod p$$

Compute common secret 
$$k_{AB} = A^b = (\alpha^b)^a \mod p$$

We can now use the joint key  $k_{AB}$  for encryption, e.g., with AES

$$y = AES_{kAB}(x)$$

$$X = AES^{-1}_{kAB}(y)$$



#### **Example**

Alice
Choose random private key a = 5

Domain parameters *p*=29, *α*=2

Bob
Choose random private key **b** = 12

Compute public key 
$$A = \alpha^a = 2^5 = 3 \mod 29$$

Compute public key  $B = a^b = 2^{12} = 7 \mod 29$ 

Compute common secret

$$k_{AB} = B^a = 7^5 = 16 \mod 29$$

Compute common secret  $k_{AB} = A^b = 3^{12} = 16 \mod 29$ 



So, ... 
$$K_{AB} \equiv B^a \mod p \equiv A^b \mod p$$

 $A \equiv \alpha^a \mod p$  $B \equiv \alpha^b \mod p$ 

How is that possible??

#### Proof:

$$B^a \equiv (\alpha^b)^a \equiv \alpha^{ab} \mod p$$

$$A^b \equiv (\alpha^a)^b \equiv \alpha^{ab} \mod p$$

Very simple. Very important.

α must be a <u>primitive element</u>.

What that means? Time for some math...



## Groups

## Cyclic Groups





## **Revisiting Groups**

**Group (G, •)**: a set of elements, with 1 group operator.

```
E.g., :(G, +) additive group(G, ×) multiplicative group
```

Has certain properties that must be satisfied:

#### A1. Closure:

If a and b belong to G, then a o b is also in G.

#### A2. Associativity:

 $a \circ (b \circ c) = (a \circ b) \circ c$  for all a, b, c in G

M1...

etc...

☐ See Lecture 6A.



## **Revisiting Groups**

#### Theorem 8.2.1

The set  $\mathbb{Z}_n^*$  which consists of all integers i = 0, 1, ..., n-1 for which gcd(i,n) = 1 forms an abelian group under multiplication modulo n. The identity element is e = 1.

**Example** Let us verify the validity of the theorem by considering the following example:

If we choose n = 9,  $\mathbb{Z}_n^*$  consists of the elements  $\{1, 2, 4, 5, 7, 8\}$ .

Multiplication table for  $\mathbb{Z}_9^*$ 

| $\times \bmod 9$ | 1                          | 2 | 4 | 5 | 7 | 8 |
|------------------|----------------------------|---|---|---|---|---|
| 1                | 1                          | 2 | 4 | 5 | 7 | 8 |
| 2                | 2                          | 4 | 8 | 1 | 5 | 7 |
| 4                | 4                          | 8 | 7 | 2 | 1 | 5 |
| 5                | 5                          | 1 | 2 | 7 | 8 | 4 |
| 7                | 7                          | 5 | 1 | 8 | 4 | 2 |
| 8                | 1<br>2<br>4<br>5<br>7<br>8 | 7 | 5 | 4 | 2 | 1 |



## **Revisiting Groups**

### **Example**: Is $(Z_9, \times)$ a multiplicative group?

 $Z_9 = (0, 1, 2, 3) 4, 5, (6, 7, 8)$ Check for property A1, A2, M1, etc..

.

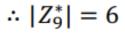
Problem with inverse property: Inverses only exist for elements a; gcd(a,9)=1  $\therefore$  elements 0, 3, 6 have no inverse in  $Z_9$ .

So, we'll define a special set called  $Z_n^*$ , by simply removing noninvertible elements. The elements of  $Z_n^*$  still satisfy all properties of a group.

i.e.,  $Z_9^* = \{1, 2, 4, 5, 7, 8\}$  is a multiplicative group.

|G| = Order of G: The number of elements in G. ... a.k.a. the cardinality of G.





#### **Definition 8.2.2** Finite Group

A group  $(G, \circ)$  is finite if it has a finite number of elements. We denote the cardinality or order of the group G by |G|.

- $(\mathbb{Z}_n, +)$ : the cardinality of  $\mathbb{Z}_n$  is  $|\mathbb{Z}_n| = n$  since  $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ .
- $(\mathbb{Z}_n^*, \cdot)$ : remember that  $\mathbb{Z}_n^*$  is defined as the set of positive integers smaller than n which are relatively prime to n. Thus, the cardinality of  $\mathbb{Z}_n^*$  equals Euler's phi function evaluated for n, i.e.,  $|\mathbb{Z}_n^*| = \Phi(n)$ . For instance, the group  $\mathbb{Z}_9^*$  has a cardinality of  $\Phi(9) = 3^2 3^1 = 6$ . This can be verified by the earlier example where we saw that the group consist of the six elements  $\{1, 2, 4, 5, 7, 8\}$ .

#### **Definition 8.2.3** Order of an element

The order ord(a) of an element a of a group  $(G, \circ)$  is the smallest positive integer k such that

$$a^k = \underbrace{a \circ a \circ \dots \circ a}_{k \text{ times}} = 1,$$

where 1 is the identity element of G.

- In the previous example, ord(3)=5.
- Don't confuse ord(a) with |G|



**Example** We try to determine the order of a = 3 in the group  $\mathbb{Z}_{11}^*$ . For this, we keep computing powers of a until we obtain the identity element 1.

$$a^{1} = 3$$
  
 $a^{2} = a \cdot a = 3 \cdot 3 = 9$   
 $a^{3} = a^{2} \cdot a = 9 \cdot 3 = 27 \equiv 5 \mod 11$   
 $a^{4} = a^{3} \cdot a = 5 \cdot 3 = 15 \equiv 4 \mod 11$   
 $a^{5} = a^{4} \cdot a = 4 \cdot 3 = 12 \equiv 1 \mod 11$ 

From the last line it follows that ord(3) = 5.

$$a^{6} = a^{5} \cdot a \equiv 1 \cdot a \equiv 3 \mod 11$$

$$a^{7} = a^{5} \cdot a^{2} \equiv 1 \cdot a^{2} \equiv 9 \mod 11$$

$$a^{8} = a^{5} \cdot a^{3} \equiv 1 \cdot a^{3} \equiv 5 \mod 11$$

$$a^{9} = a^{5} \cdot a^{4} \equiv 1 \cdot a^{4} \equiv 4 \mod 11$$

$$a^{10} = a^{5} \cdot a^{5} \equiv 1 \cdot 1 \equiv 1 \mod 11$$

$$a^{11} = a^{10} \cdot a \equiv 1 \cdot a \equiv 3 \mod 11$$

the powers of a run through the sequence  $\{3, 9, 5, 4, 1\}$ 



In case of the multiplicative group  $Z_p^*$ , where p is prime;

$$Z_p^* = \{1, 2, 3, ..., p-1\}$$

e.g., 
$$Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

To understand what's cyclic groups, let's pick a number (a=3) and compute all its powers..

$$a^{1}=3$$
  
 $a^{2}=9$   
 $a^{3}=27 \equiv 5$   
 $a^{4}=a^{3} a=5 \times 3 \equiv 4$   
 $a^{5}=a^{4} a=4 \times 3 \equiv 1$   
 $a^{6}=a^{5} a=1 \times 3 \equiv 3$   
 $a^{7}=a^{6} a=3 \times 3 \equiv 9$ 

The result cycles over and over again.



#### **Definition 8.2.4** Cyclic Group

A group G which contains an element  $\alpha$  with maximum order  $ord(\alpha) = |G|$  is said to be cyclic. Elements with maximum order are called primitive elements or generators.





Example We want to check whether a = 2 happens to be a primitive element of  $\mathbb{Z}_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}.$ 

$$a = 2$$
  $a^6 \equiv 9 \mod 11$   
 $a^2 = 4$   $a^7 \equiv 7 \mod 11$   
 $a^3 = 8$   $a^8 \equiv 3 \mod 11$   
 $a^4 \equiv 5 \mod 11$   $a^9 \equiv 6 \mod 11$   
 $a^5 \equiv 10 \mod 11$   $a^{10} \equiv 1 \mod 11$ 

$$ord(a) = 10 = |\mathbb{Z}_{11}^*|.$$

Note that the cardinality of the group is  $|\mathbb{Z}_{11}^*| = 10$ .

Let's look again at all the elements that are generated by powers of two.



$$Z_{11}^* = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$



Which elements did the number 2 **generate**? . . . All of them. So, we call it a *generator*, primitive root, or a *primitive element*.

a=2 is a generator of  $Z_{11}^*$ 

- $\therefore 2^{10} \mod 11 \equiv 1$
- ∴  $2^{45363457210}$  mod  $11 \equiv 1$ .

\* It is important to stress that the number 2 is not necessarily a generator in other cyclic groups  $\mathbb{Z}_{7}^{*}$ , ord(2) = 3

✓ The element 2 is thus not a generator in that group.



- Cyclic Groups are the basis of several cryptosystems.
  - For every prime p,  $(Z_p^*, \times)$  is a cyclic group.

**Theorem 8.2.2** For every prime p,  $(\mathbb{Z}_p^*, \cdot)$  is an abelian finite cyclic group.

#### Theorem 8.2.3

*Let* G *be a finite group. Then for every*  $a \in G$  *it holds that:* 

1. 
$$a^{|G|} = 1$$

2. ord(a) divides |G|



#### Theorem 8.2.3

*Let* G *be a finite group. Then for every*  $a \in G$  *it holds that:* 

- 1.  $a^{|G|} = 1$
- 2. ord(a) divides |G|
- ightharpoonup Property 1: Proof using Fermat's little theorem for  $oldsymbol{Z}_p^*$

$$a^{p} \equiv a \mod p$$
  
 $a^{p-1} \equiv 1 \mod p$   
 $|Z_{p}^{*}| = p-1$   
 $a^{p-1} = a^{|Z_{p}^{*}|} = 1$ 

 $\triangleright$  Property 2: example using  $Z_{11}^*$ 

$$|Z_{11}^*| = 10$$

Possible orders  $\in \{1, 2, 5, 10\}$ 

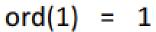


## Cyclic Groups

#### Theorem 8.2.3

*Let* G *be a finite group. Then for every*  $a \in G$  *it holds that:* 

- 1.  $a^{|G|} = 1$
- 2. ord(a) divides |G|
- Property 2: example using Z<sub>11</sub>\*
  - $|Z_{11}^*| = 10$
  - Possible orders  $\in \{1, 2, 5, 10\}$
- ➤ How many primitive elements (i.e., generators) do we have?
- **✓** Four elements: 2, 6, 7, 8.
  - The only element orders in this group are 1, 2, 5, and 10, since these are the only integers that divide 10.



$$ord(2) = 10$$

$$ord(3) = 5$$

$$ord(4) = 5$$

$$ord(5) = 5$$

$$ord(6) = 10$$

$$ord(7) = 10$$

$$ord(8) = 10$$

$$ord(9) = 5$$

$$ord(10) = 2$$

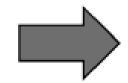


### > How is this related to DHKE?

✓ Cyclic groups make good Discrete Logarithm Problems.

Definition: Discrete Logarithm Problem (DLP) Given a prime p, an element  $\beta \in Z_p^*$ , and the generator  $\alpha$ , find x such that;  $\alpha^x \equiv \beta \mod p$ 

e.g., In DHKE, attackers know p,  $\alpha$ , A, B However, finding  $K_{AB} = \alpha^{ab}$  is a hard problem.



Diffie-Hellman Problem (DHP)

Especially with a large p, attackers need to compute  $log_{\alpha}B \mod p$ .



### Discrete Logarithm Problem (DLP)

**Definition 8.3.1** Discrete Logarithm Problem (DLP) in  $\mathbb{Z}_p^*$  *Given is the finite cyclic group*  $\mathbb{Z}_p^*$  *of order* p-1 *and a primitive element*  $\alpha \in \mathbb{Z}_p^*$  *and another element*  $\beta \in \mathbb{Z}_p^*$ . The DLP is the problem of determining the integer  $1 \le x \le p-1$  such that:

$$\alpha^x \equiv \beta \mod p$$

$$x = \log_{\alpha} \beta \mod p$$
.



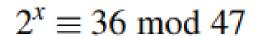
## Discrete Logarithm Problem (DLP)

In other words...

If x is known, it's computationally easy to get  $\alpha^x \equiv \beta$  mod p However, for large parameters, it's very difficult to get  $\log_{\alpha} \beta$  mod p

This forms a one-way function.

$$e. g., Z_{47}^*$$
,  $\beta = 41$ ,  $\alpha = 5$   
Find x such that  $5^x \equiv 41 \mod 47$ .  
Using brute force,  $x = 15$ .



By using a brute-force attack, we obtain a solution for x = 17



## Example: mod 7

> 3 is a **primitive element** or **generator** under the **multiplication** operation

$$3^1 = 3 \mod 7$$

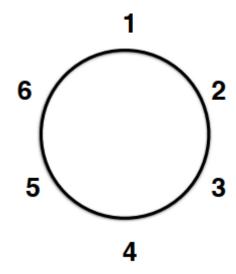
$$3^2 = 9 = 2 \mod 7$$

$$3^3 = 27 = 6 \mod 7$$

$$3^4 = 81 = 4 \mod 7$$

$$3^5 = 243 = 5 \mod 7$$

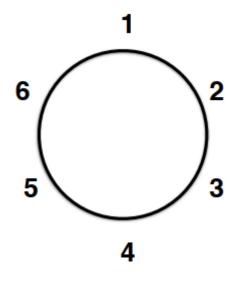
$$3^6 = 729 = 1 \mod 7$$





### Example: mod 7

```
>>> for i in range(1,7):
      print 3, "**", i, "= ", (3**i) % 7, "mod 7"
3 ** 1 = 3 \mod 7
3 ** 2 = 2 \mod 7
3 ** 3 = 6 \mod 7
3 ** 4 = 4 \mod 7
3 ** 5 = 5 \mod 7
3 ** 6 = 1 \mod 7
```



$$\alpha = 3$$

DLP: 
$$3^x = 4 \mod 7$$
  $x = 4$ 

DLP: 
$$3^x = 1 \mod 7$$
  $x = 6$ 



## Concept of Encryption using DLP



α, p are publicly known



Bob

 $A = k_{pub,A} \equiv \alpha^a \mod p$ 

$$B = k_{pub,B} \equiv \alpha^b \mod p$$

**DHKE** 

 $K_{\Delta R} \equiv B^a \mod p$ 

$$x \equiv y \cdot K_{AB}^{-1} \mod p$$
 Encryption



### Diffie-Hellman Problem (DHP)

Attackers know p,  $\alpha$ , A, B Attackers want  $K_{AB} = \alpha^{ab}$ 

- Attacker's possible steps to solve DHP:
  - 1. Compute  $a = \log_{\alpha} A \mod p$
  - 2. Compute Ba=KAB mod p
- ➤ For attackers, step 1 is computationally a very hard problem if p is large enough >1024 bits.



## **Security of DHKE**

- > DHKE alone is vulnerable to active attacks.
  - i.e., the protocol can be defeated if the attacker can modify the messages or generate false messages.
  - So, digital signatures and public-key certificates are used to overcome this vulnerability.
- > Passive attacks.
  - Examples:
    - Exhaustive search
    - Index-calculus algorithm
    - Baby-step giant-step algorithm
    - Pollard's rho algorithm
    - Pohlig-Hellman algorithm
  - ☐ To overcome, use large p





## Thank You!

# See You next Lectures!! Any Question?

#### THE FIRST BRITISH HIGHER EDUCATION IN EGYPT



26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt

Tel:+202383711146 Fax: +20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline: 16672 Website: www.msa.edu.eg

