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PKC Algorithms: Three Families

e.g. e.g.: e.g.:
* RSA algorithm. » Diffie—Hellman key » EC Diffie-Hellman key
exchange. exchange (ECDH).
* ElGamal encryption. « EC Digital Signature
= Digital Signature Algorithm (ECDSA).

Algorithm (DSA).
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RSA Algorithm
» Some History

v' 1976: Public key cryptography first introduced:

Martin Hellman and Whitfield Diffie published their landmark publickey paper in 1976
v' 1977: Rivest—Shamir—Adleman (RSA) proposed the asymmetric RSA cryptosystem algorithm

v Until now, RSA is the most widely use asymmetric cryptosystem although elliptic curve cryptography
(ECC) becomes increasingly popular
v' RSA is mainly used for two applications
» Transport of (i.e., symmetric) keys
* Digital signatures
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RSA Algorithm

K ub: public key
K.+ private key

Alice Y= E,(i’:} Bob

y - I<puhl'l{pur
d (y) =x
!

1) How to encrypt/decrypt?
2) How to compute K..and K.,?
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RSA Algorithm

» Encryption and Decryption

v' RSA operations are done over the integer ring Zn (i.e., arithmetic modulo n), where n = p * g, with
p, g being large primes

v' Encryption and decryption are simply exponentiations in the ring
v In practice x, y, nand d are very long integer numbers (= 1024 bits)

Definition

Given the public key (n,e) = k,,, and the private key d = k,,, we write
y = ekpub(x} = x*mod n
X = di,,(y) = y?mod n

where X, ye Z,

We call ekpuh[] the encryption and dhp;(] the decryption operation.
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RSA Algorithm

» Key Generation

v' Like all asymmetric schemes, RSA has set-up phase during which the private and public keys are
computed

Algorithm: RSA Key Generation

Output: public key: k,, = (n, e) and private key k,, = d
1. Choose two large primes p, g

2. Computen=p*q

3. Compute @(n) =(p-1) *(g-1)

4

Select the public exponent e £ {1, 2, ..., ®(n)-1} such that
ged(e, @(n)) =1

o

Compute the private key d such that d *e = 1 mod ®(n)
6. RETURNKk,, =(n, e), k, =d
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RSA Algorithm

Remarks:

* Choosing two large, distinct primes p, g (in Step 1) is non-trivial

* gcd(e, @(n)) = 1 ensures that e has an inverse and, thus, that there is
always a private key d

Notes:

v"In practice, n is =2 1024 bits long.

v Strength of RSA with n = 23972 js equivalent to AES128.

v Longer n means more security, but slower computation.

v p and q should differ in length by only a few digits . . . p, g =2 512 bits long
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RSA Algorithm

Example: RSA with small numbers:

Alice Bob
Message x =4 1. p=3, g=11
2.n=33
3. ®(n)=(p-1) - (g-1)
=2-10 =20
4. Choosee=3
Y =euu(X) =x*modn Koup =(33,3) 5.d=el=7mod 20
=43 mod 33 )
=31 mod 33 y

x=dg(y)=y*mod n
=31 mod 33
=4 mod 33
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RSA Algorithm

Parameters Example

Example of practical RSA
parameters for n = 1024 2>

p = EODF D2C2A288ACEBCTOSE FAB30E4447541A8C5A47A37185C5A9
CB98389CE4DE 19199AA3069B8404 F D9SC801568CBI1T0EBT12BF
10B4955CE9CIDCSCEG8S55C6123,

q = EBEOFCF21866F D9AYFOD72F7994875A8D92EGTAEEABS 1513682
ATTSASD4SB149828AEA30BDOBA3ABITT982A3D42168F 594CA99
F3981DDABFAB2369F 229640115,

n = CF33188211FDF6052BDBB1A37235EO0ABBS978A45CT1FD381A91
ADI12FCT6DAOS44CATS68ACB3IDESSDATCASDBATTISTIABT2EG3S
DOBOAAAC22D2834 1 E998E90F 82122A2C06090F 43A37E0203C2B
T2E401 FDO6SYECSEADAFOTEGS6EY06F 01B2468AETB30CBD670
255C1FEDE1A2762CF4392C0759499CCOABECF FOO8728D9A1 1ADF,

¢ = 40B028E1EACCF07537643101F F72444A0BE 1 D7682F | EDBS53E3
ABAF6DD8293CA1945DB12D796A E9244D60565C2E B692A89BEES

IDSSD2T8562E D6O066DDS21 1 E6T3ISCF8985716720612040580
SBS54DI10DAECAEDA253CTSFATA098FE3FTFBTISIFF5121353C554
391E114C85B56A9725E9BDS685D6CYCTEEDSE E442366353DC39,,

d = C21A93EETSIASDAFBFDT7285D79D6768CSSEBF 283743D2889A3
95F266CTSFAA2BESOF 545960C2CEO1 EBSADS246905163B28D0B
SBAABBISOCCO3FAEC499186168AE9ED6DSS0S889I890TE6ICTCC
CCS84D65DB0ICFE32DFC983707F87TF SAAGAEABIETTBYCEG30E2
CODFO5841B5SE4984D059A35D7270D5005 14891 F7B77BSO4BEDS 1,
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RSA Algorithm

Proof of Correctness

We need to prove that dy, (ey,,(X)) = X

i.e., prove that (x8)4 = x% mod n=x mod n
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RSA Algorithm: Practical Consideration

RSA is a heavy user of exponentiation...
Encryption: y = x* mod n
Decryption: x = yd mod n

Problem: How to quickly exponentiate with extremely large numbers?

Solution: Using Square-and-Multiply Algorithm

Represent the exponent in binary; x11010

e.g., x% Initially start with x*

Square sQ ¥ N=x2 (x1)2 = x10

Multiply ~ MUL x:‘zfgﬁ [xi‘:};: = “jlln Simply construct the binary
5Q }‘E"‘E‘Ku [xui . xlm exponent from left to right by
sQ X7 X=X ()%= x shifting (5Q) and adding (MUL).
MUL oy 12=y13 (x1100)y = y1101
SQ x13.xl3=x25 [xllﬂl}l - xllﬂlﬂ

Note: MUL is only used
for the 1 bits.

when to SQ and when to MUL? -

Looks random.. How do | know @f
: A
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Security of RSA

The RSA discussed so far is called schoolbook RSA.

It has several weaknesses:
- RSA is deterministic.

- y=xforx=0, 1, -1.

- RSA is malleable.

A malleable cipher allows an attackers to modify the value of x without decrypting v.
e.g., attacker wants to multiply x by s=2. But only has access to y and e.
Then replacing y with s®y leads to..
decryption: (sty)d = sedxed = sx mod n.

In practice, these weaknesses can be eliminated by using padding.
i.e., Optimal Asymmetric Encryption Padding (OAEP)
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Security of RSA: Attacks

Attack possibilities against RSA:
1. Protocol attacks

2. Mathematical attacks. i.e., factoring the modulus.

The attackers knows n and e.
But can’t compute d because p and g are unknown!
Longer n is more difficult to factor, but slower algorithm.
Minimum n size = 1024. Recommended 2048-4096.

3. Side-channel attacks.

Exploit info leaked from the processing power or time (i.e., physical channels )
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PKC Algorithms: Three Families

e.g

* RSA algorithm. * EC Diffie=Hellman key

exchange. exchange (ECDH).
* ElGamal encryption. « EC Digital Signature
 Digital Signature Algorithm (ECDSA).
Algorithm (DSA).
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Diffie-Hellman Key Exchange (DHKE)

» Proposed in 1976 by Whitfield Diffie and Martin Hellman

» Widely used, e.qg. in Secure Shell (SSH), Transport Layer Security
(TLS), and Internet Protocol Security (IPSec)

» The Difflie—Hellman Key Exchange (DHKE) is a key exchange
protocol and not used for encryption

» (For the purpose of encryption based on the DHKE, ElGamal can
be used.)



Diffie-Hellman Key Exchange (DHKE)

Diffie-Hellman setup:
1. Choose a large prime p.
2. Choose an integer a € {2,3,...,p-2}.
3. Publish p and a.

p is a large prime 21024 bits long.
We’ll soon discuss the nature of a.

Alice Bob
Choose a =k, 5 € {2,...,p-2} Choose b =k 5 € {2,...,p-2}
Compute A=k, , = a® mod p A > Compute B=k,, s =a”mod p
) B
Kys= B2modp Kie= AP modp

As a result, K, is the shared secret.
e.g., we can use the 128 MSB of K,; as a key for AES128.
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Diffie-Hellman Key Exchange (DHKE)

Essential idea:

» Choose two random secrets a and b

(a@)> mod p = (aP)2 mod p

» Both parties can calculate that value without sending secrets
over the wire
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Diffie-Hellman Key Exchange (DHKE)

Alice

Choose random private key
Ka=aes{1.2,...p-1}

Compute corresponding public key

Bob

Choose random private key
Kog=b e {1.2,....p-1}

Koupa=A =a2mod p

Compute common secret
k,z=B=2 = (a2)»mod p

We can now use the joint key K,z
for encryption, e.g., withAES

A
Compute correspondig public key
B Kous= B =a> modp
Compute common secret
kis= A= (at)amod p
y = -1
x=AEST_(y)

y =AESyup(X)
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Diffie-Hellman Key Exchange (DHKE)

Example
Domain
Alice parameters Bob
Choose random private key P=29,a=2  Choose random private key
a=3> b=12
Compute public key A .
= = 29 =
A=0%=2"=3modz29 Compute public key
B=ab=212=7 mod 29
Compute common secret Compute common secret

kag=B3=7°> =16 mod 29 kig=AP=372=16 mod 29
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Diffie-Hellman Key Exchange (DHKE)

So,...Kyg=Bmodp=APmodp A=a’modp
ﬁ\} B=a’modp
©
How is that possible?? @J
Proof:

BZ= (a®)?= a®® mod p
AP = (a?)P = a?® mod p
Very simple. Very important.

a must be a primitive element.
What that means? Time for some math...
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Groups

Cyclic Groups



Revisiting Groups
Group (G, °): a set of elements, with 1 group operator.

E.g.,:
(G, +) additive group
(G, X ) multiplicative group

Has certain properties that must be satisfied:
Al. Closure:

If a and b belong to G, thenaco bisalsoinG.
A2. Associativity:

ao(boec)=(achb)ocforalla, b, cinG

M1...
etc. .

] See Lecture 6A.
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Revisiting Groups

Theorem 8.2.1

The set I, which consists of all integersi=0,1,... ,n—1 for which
gcd(i,n) = 1 forms an abelian group under multiplication modulo
n. The identity element is e = 1.

Example Let us verify the validity of the theorem by considering the following example:

If we choose n =9, Z* consists of the elements {1,2,4,5,7,8}.

Multiplication table for Zg

*xmod9(124578
124578
248157
487215
512784
751842
875421

90 =1 th B b =
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Revisiting Groups
Example : Is (Z4 , x) a multiplicative group?
Z,=(0)1,2(3)4,5,6)7, 8}

Check for property Al, A2, M1, etc..

Problem with inverse property: Inverses only exist for elements a; gcd(a,9)=1
. elements 0, 3, 6 have no inverse in Z,.

So, we’ll define a special set called Z;, , by simply removing noninvertible elements.

The elements of Z,, still satisfy all properties of a group.

i.e., Zo={1, 2,4,5, 7, 8}is a multiplicative group.

| G| = Order of G: The number of elements in G. ... a.k.a. the cardinality of G.

ECE5632 - Spring 2024-Dr. Farah Raad
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Cyclic Groups ()

Definition 8.2.2 Finite Group
A group (G, o) is fimite if it has a finite number of elements. We
denote the cardinality or order of the group G by |G|.

m (Z,.+): the cardinality of Z,, is |Z,| = n since Z, = {0.1,2,....,n—1}.

m (Z},-): remember that Z} is defined as the set of positive integers smaller than
n which are relatively prime to n. Thus, the cardinality of Z; equals Euler’s phi
function evaluated for n, i.e., |Z| = @(n). For instance, the group Z§ has a car-
dinality of @(9) = 32 —3! = 6. This can be verified by the earhier example where

we saw that the group consist of the six elements {1,2.4,5,7,8}.
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Cyclic Groups ()

Definition 8.2.3 Order of an element
The order ord(a) of an element a of a group (G,o) is the smallest
positive integer k such that

- =aoao... oa=1

.hﬁr
k times

!

where 1 is the identity element of G.

* In the previous example, ord(3)=5.
* Don’t confuse ord(a) with |G|
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Cyclic Groups C)

Example We try to determine the order of a = 3 in the group Z7,. For this, we
keep computing powers of a until we obtain the identity element 1.

a' =3

a=aa =3-3=09

@ =a*-a=9-3=27=5mod 11
at=a-a=53=15=4mod 11
@ =a*-a=4-3=12=1mod 11

From the last line it follows that ord(3) = 5.

a® =a>a =1-a =3 mod 11
a =d-@=1-=9mod11  the powers of a run through the sequence {3.9,5.4,1}
@ =ad ad=1ad=5mod 1l
@ =a-a*=1-a*=4mod 11
ad’=a> =11 =1mod 11
a'=a% a=1-a =3mod 11
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Cyclic Groups C)

In case of the multiplicative group Z,, , where p is prime;
x 25={1,2,3,..., pr1}

e.g. Zi,={1,2,3,4,5,6,7,8,9, 10}

To understand what’s cyclic groups,
let’s pick a number (a=3) and compute all its powers..

al=3

a’=

a3=27=5 The result cycles over and over again.
a*=a*a=5x3=

ab=a%a=1x3=3
a’=a%a=3x3=9

ECE5632 - Spring 2024-Dr. Farah Raad
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Cyclic Groups C)

Definition 8.2.4 Cyclic Group

A group G which contains an element o with maximum order
ord(ot) = |G| is said to be cyclic. Elements with maximum order
are called primitive elements or generators.
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Cyclic Groups CD

Example We want to check whether a = 2 happens to be a primitive element of
Zy,=11,2,3,4,5,6,7,8,9,10}.

a =2 a® =9 mod 11
=4 a’ =7 mod 11
a =8 a® =3 mod 11
a* =5 mod 11 a’ =6 mod 11
a®> = 10 mod 11 a'’ = 1 mod 11
ord(a) = 10 = |Z],|.
Note that the cardinality of the group is |Z],| = 10.
% Let’s look again at all the elements that are generated by powers of

two. il 2 3 45 6 7 8 9 10

|2435109?361
/ The powers of a = 2 actually generate all elements of the group le
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Cyclic Groups CD

Z11=11,2,3,4,5,6,7,8,9, 10}

al=2
12= 1 Which elements did the number 2 generate? . . . All of them.
TP So, we call it a generator, primitive root, or a primitive element.
a*="5 ~ ord(2)=10
a’= 10
26= 9 a=2 is a generator of Z7,
7—
2= 7 #2%mod11=1
a"=3 - 245363457210 mod 11 = 1.
a’=6
all=1
all=2

¢ It Is Important to stress that the number 2 is not necessarily a generator

In other cyclic groups
PRI 7% ord(2) =3
v' The element 2 is thus not a generator in that group.

ECE5632 - Spring 2024-Dr. Farah Raad
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Cyclic Groups C)

» Cyclic Groups are the basis of several cryptosystems.

 For every prime p, (Z, , x) Is a cyclic group.

Theorem 8.2.2 For every prime p, (Z,,-) is an abelian finite cyclic

group.

Theorem 8.2.3
Let G be a finite group. Then for every a € G it holds that:

1. d¢l =1
2. ord(a) divides |G|
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Cyclic Groups \, /\

Theorem 8.2.3
Let G be a finite group. Then for every a € G it holds that:

1. dl=1
2. ord(a) divides |G|

» Property 1: Proof using Fermat's little theorem for Z,,

aP=amodp
aPl1=1modp
|Z1= p-1

ar1=alZl=1
» Property 2: example using Z74
Zi1 | =10
Possible orders € {1, 2, 5, 10}
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>

v

v" The only element orders in this group are 1, 2, 5, and 10, since

Cyclic Groups C)

Theorem 8.2.3
Let G be a finite group. Then for every a € G it holds that:

1. dfl =1
2. ord(a) divides |G|

Property 2: example using Z74 *

Z111=10

Possible orders € {1, 2, 5, 10}

How many primitive elements (i.e., generators) do we
nave”?

~our elements: 2, 6, 7, 8.

these are the only integers that divide 10.
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Cyclic Groups C)

» How Is this related to DHKE?
v Cyclic groups make good Discrete Logarithm Problems.

Definition: Discrete Logarithm Problem (DLP)
Given a prime p, an element 3 € Z;, and the

generator a,
find x such that; a*= 3 mod p

- Diffie-Hellman Problem (DHP)

Especially with a large p, attackers need to compute log,B mod p.

e.g., In DHKE, attackers know p, a, A, B
However, finding K,,= a®” is a hard problem.
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Discrete Logarithm Problem (DLP)

Definition 8.3.1 Discrete Logarithm Problem (DLP) in Z7

Given is the finite cyclic group Zj, of order p— 1 and a primitive el-
ement o € Z,, and another element b € Z;,. The DLP is the problem
of determining the integer 1 < x < p — 1 such that:

o' =[F modp

x=log, B mod p.

ECE5632 - Spring 2024-Dr. Farah Raad
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Discrete Logarithm Problem (DLP)

In other words...

If x is known, it's computationally easy to get a* = 3 mod p
However, for large parameters, it’s very difficult to get log,  mod p

This forms a one-way function.

2* =36 mod 47

e.g.,Z47,p=4L, =5 By using a brute-force
Find x such that 5*= 41 mod 47. attack, we obtain a

Using brute force, x = 15. solution for x= 17
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Example: mod 7

» 3is a primitive element or generator under the multiplication operation

31 =3 mod 7 1
32=9 =2mod7 6 2
33=27 =6mod7

39=81 =4mod7 5 3

3°=243 =5mod 7
36=729 =1mod7
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Example: mod 7

>>> for i in range(1,7):

**k

print 3, "sx", 1,

"= ", (3%xi) % 7, "mod 7"

3 1= 3 mod 7

3%k 2= 2 mod 7

3%k 3 = 6 mod 7

3%k 4 = 4 mod 7

3%k 5= 5mod 7

3%k 6= 1mod 7
a=3

DLP: 3* =4 mod 7
DLP: 3*=1mod 7

Xx=4

XxX=06
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Concept of Encryption using DLP

a, p are publicly known ﬁ

Alice Bob
A=K,a=0®mod p A F B=k,pe=a’modp’
< B >~ DHKE
Kas= B mod p Kig=A°modp
y=x-K,z mod p y h k +
g ~  Encryption

X= y I{Eé mod p )
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Diffie-Hellman Problem (DHP)

Attackers know p, a, A, B
Attackers want K, = a@®

» Attacker’'s possible steps to solve DHP:
1. Compute a =log,A mod p

2. Compute B?=K,, mod p

» For attackers, step 1 is computationally a very hard problem if p is large
enough >1024 bits.
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Security of DHKE

» DHKE alone is vulnerable to active attacks.
* I.e., the protocol can be defeated if the attacker can modify the messages or

generate false messages.
* S0, digital signatures and public-key certificates are used to overcome this

vulnerability.

» Passlve attacks.

d  Examples:
« Exhaustive search
» Index-calculus algorithm
 Baby-step giant-step algorithm
» Pollard’s rho algorithm
 Pohlig—Hellman algorithm

d To overcome, use large p
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Thank You!

See You next Lectures!!
Any Question?
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