

Cryptography ECE5632 - Spring 2025

Lecture 8B

Dr. Farah Raad

The First British Higher Education in Egypt

The same start and the FT SQ

MSA UNIVERSITY جامعة أكتوبر للعلوم الحديثة والآداب

Digital Signature

The objectives of a security systems are called security services.

There are many security services. Most importantly:

- Confidentiality: Information is kept secret from all but the authorized parties.
- Message Authentication: The sender of a message is authentic.
- Message Integrity: Message has not been modified during transmission.
- Nonrepudiation: The sender of a message can't deny the creation of the message.

Intro to Digital Signature

So far we assumed two honest people and an attacker in between.

We securely share a secret key and encrypt data in between.

But, what if ...

Our goal: Verify the authenticity of a sender.

Intro to Digital Signature

- > Alice orders a pink car from the car salesmen Bob
- After seeing the pink car, Alice states that she has never ordered it:
- How can Bob prove towards a judge that Alice has ordered a pink car? (And that he did not fabricate the order himself)
 - Symmetric cryptography fails because both Alice and Bob can be malicious
 - □ Can be achieved with public-key cryptography

Intro to Digital Signature

Conventionally, handwritten signatures are used to verify authenticity.

CONTRACT
bla bla bla
bla bla bla
Honly

The unique signature is simply added to the document. It works. Digitally, things are a bit different.

Unlike handwritten signatures, this can be easily faked.

Basic Concept of Digital Signatures

- For a given message x, a digital signature is appended to the message (just like a conventional signature).
- Only the person with the private key should be able to generate the signature.
- The signature must change for every document.

⇒The signature is realized as a function with the message x and the private key as input. ⇒The public key and the message x are the inputs to the verification function.

Alice can deny signing the message if the signing key is shared.

RSA Digital Signature

To generate the private and public key:

Use the same key generation as RSA encryption.

To generate the signature:

"encrypt" the message x with the private key

 $s = sig_{K_{priv}}(x) = x^d \mod n$

Append s to message x

To verify the signature:

"decrypt" the signature with the public key

x'=ver_{Kpub}(s)=s^e mod n

RSA Digital Signature: Example

Suppose Bob wants to send a signed message (x = 4) to Alice using RSA signature. Given p = 3 and q = 11. Compute signature as the sender and verify it as the receiver.

(n,e)=(33,3)

(x,s) = (4,16)

Alice

Bob 1. choose p = 3 and q = 112. $n = p \cdot q = 33$ 3. $\Phi(n) = (3 - 1)(11 - 1) = 20$ 4. choose e = 35. $d \equiv e^{-1} \equiv 7 \mod 20$ compute signature for message x = 4: $s = x^d \equiv 4^7 \equiv 16 \mod 33$

verify: $x' = s^e \equiv 16^3 \equiv 4 \mod 33$ $x' \equiv x \mod 33 \Longrightarrow$ valid signature

Key Generation for Elgamal Digital Signature

- 1. Choose a large prime *p*.
- 2. Choose a primitive element α of \mathbb{Z}_p^* or a subgroup of \mathbb{Z}_p^* .
- 3. Choose a random integer $d \in \{2, 3, \dots, p-2\}$.
- 4. Compute $\beta = \alpha^d \mod p$.

The public key is now formed by $k_{pub} = (p, \alpha, \beta)$, and the private key by $k_{pr} = d$.

Elgamal Signature Generation

- 1. Choose a random ephemeral key $k_E \in \{0, 1, 2, ..., p-2\}$ such that $gcd(k_E, p-1) = 1$.
- 2. Compute the signature parameters:

 $r \equiv \alpha^{k_E} \mod p,$ $s \equiv (x - d \cdot r) k_E^{-1} \mod p - 1.$

Elgamal Signature Verification

1. Compute the value

$$t \equiv \beta^r \cdot r^s \bmod p$$

2. The verification follows from:

$$t \begin{cases} \equiv \alpha^x \mod p \implies \text{valid signature} \\ \not\equiv \alpha^x \mod p \implies \text{invalid signature} \end{cases}$$

(β,p,α)

x, (r,s)

Choose prime p Choose primitive element α $k_{pr} = d \in \{2,...,p-2\}$ $k_{pub} = \beta \equiv \alpha^d \mod p$

ephemeral key $k_E \in \{2,...,p-2\}$, such that $gcd(k_E,p-1)=1$ $r \equiv \alpha^{K_E} \mod p$ $s \equiv (x - d.r) K_E^{-1} \mod p-1$

Verify t = $\beta^r r^s \mod p$

If $t \equiv \alpha^x \mod p \rightarrow \text{valid sign}$ If $t \not\equiv \alpha^x \mod p \rightarrow \text{invalid sign}$

Proof of correctness: $\beta^r r^s \equiv (\alpha^d)^r (\alpha^{K_E})^s \mod p$ $\equiv \alpha^{d.r+K_E.s} \mod p \equiv \alpha^x \mod p$ Let $a^m = a^{q(p-1)+r} = (a^q)^{p-1}a^r$ From Fermat's Little Theorem, $(a^q)^{p-1} \equiv 1 \mod p$ $a^m \mod p \equiv a^r \mod p$

Then $a^m \mod p \equiv a^{m \mod p-1} \mod p$

So,
$$d.r+K_E$$
. s \equiv x mod p-1
s \equiv (x - d.r) K_E^{-1} mod p-1

1 5

ElGamal Digital Signature: Example

Bob wants to send a message to Alice. This time, it should be signed with the Elgamal digital signature scheme.

Alice

 $(p,\alpha,\beta)=(29,2,7)$

Bob

1. choose p = 292. choose $\alpha = 2$ 3. choose d = 124. $\beta = \alpha^d \equiv 7 \mod 29$

compute signature for message x = 26: choose $k_E = 5$, note that gcd(5,28) = 1 $r = \alpha^{k_E} \equiv 2^5 \equiv 3 \mod 29$ $s = (x - dr)k_E^{-1} \equiv (-10) \cdot 17 \equiv 26 \mod 28$

(x,(r,s))=(26,(3,26))

verify: $t = \beta^r \cdot r^s \equiv 7^3 \cdot 3^{26} \equiv 22 \mod 29$ $\alpha^x \equiv 2^{26} \equiv 22 \mod 29$ $t \equiv \alpha^x \mod 29 \Longrightarrow$ valid signature

Presentation Topics

- ➤Whirlpool Hash Function
- ➢Open-PGP CFB mode of operation
- Attacks against Open-PGP CFB mode of operation
- Homomorphic Encryption Algorithms
- Secret Sharing Protocols

Chosen-prefix collision attack on SHA-1 Hash function

Thank You!

See You next Lectures!! Any Question?

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt Tel:+202383711146 Fax:+20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline:16672 Website: www.msa.edu.eg

