

Cryptography ECE5632 - Spring 2025

Lecture 9A

Dr. Farah Raad

The First British Higher Education in Egypt

The same start and the FT SQ

MSA UNIVERSITY جامعة أكتوبر للعلوم الحديثة والآداب

ECE5632 - Spring 2024-Dr. Farah Raad

Problem:

Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and fields with parameters of more than 1000 bits.

High computational effort on CPUs with 32-bit or 64-bit arithmetic

Large parameter sizes critical for storage on small and embedded Motivation:

Smaller field sizes providing equivalent security are desirable **Solution:**

Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic schemes with coefficient sizes of 160-256 bits, reducing significantly the computational effort.

ECC is based on the generalized discrete logarithm problem.

polynomial equations over the real numbers.

Plot of all points (*x*, *y*) which fulfill the equation $x^2 + y^2 = r^2$ over \mathbb{R}

Plot of all points (x, y) which fulfill the equation $a \cdot x^2 + b \cdot y^2 = c$ over \mathbb{R}

- ➢ From the two examples above, we conclude that we can form certain types of curves from polynomial equations.
- > An *elliptic curve* is a special type of polynomial equation.
- > In cryptography, we are interested in elliptic curves module a prime p:

Definition 9.1.1 Elliptic Curve *The* elliptic curve *over* \mathbb{Z}_p , p > 3, *is the set of all pairs* $(x, y) \in \mathbb{Z}_p$ *which fulfill* $y^2 \equiv x^3 + a \cdot x + b \mod p$

together with an imaginary point of infinity O, where

 $a, b \in \mathbb{Z}_p$

and the condition $4 \cdot a^3 + 27 \cdot b^2 \neq 0 \mod p$.

□ Note that $Z_p = \{0, 1, ..., p - 1\}$ is a set of integers with modulo p arithmetic

Elliptic curves are polynomials that define points based on the (simplified) Weierstrass equation:

 $y^2 = x^3 + ax + b$

for parameters a,b that specify the exact shape of the curve
 ➢ On the real numbers and with parameters a, b R, an elliptic curve looks like this à□

Elliptic curves can not just be defined over the real numbers R but over many other types of finite fields.

$$P = (x_1, y_1)$$
 and $Q = (x_2, y_2)$
 $P + Q = R$
 $(x_1, y_1) + (x_2, y_2) = (x_3, y_3)$

Point Addition P+Q This is the case where we compute R = P + Q and $P \neq Q$.

The construction works as follows: Draw a line through P and Q and obtain a third point of intersection between the elliptic curve and the line.

Point Doubling P+P This is the case where we compute P+Q but P = Q. Hence, we can write R = P+P = 2P.

Point addition on an elliptic curve over the real numbers

Elliptic Curve Point Addition and Point Doubling

 $x_3 = s^2 - x_1 - x_2 \mod p$ $y_3 = s(x_1 - x_3) - y_1 \mod p$

where

$$s = \begin{cases} \frac{y_2 - y_1}{x_2 - x_1} \mod p \text{ ; if } P \neq Q \text{ (point addition)} \\ \frac{3x_1^2 + a}{2y_1} \mod p \text{ ; if } P = Q \text{ (point doubling)} \end{cases}$$

9

Example :

Consider the Elliptic curves Weierstrass equation is : $y^2 = x^3 + 3x + 10 \pmod{29}$ let P=(5,11) , Q=(10, 24),

Add the points P, Q.
 Double the point P.

$$y^2 = x^3 + ax + b$$

Answer:

From Elliptic equation, we have a= 3, b=10, P=29 1. For Adding points P, Q, we should calculate S to be able calculate R $S = \frac{y_2 - y_1}{x_2 - x_1} \mod p$ $S = \frac{24 - 11}{10 - 5} \mod 29 = 13 * (5)^{-1} \mod 29 = 13 * 6 \mod 29 = 20$ $x_3 = s^2 - x_1 - x_2 \mod p$ $x_3 = 8, y_3 = 16$

R = (8, 16)

$$y_3 = s(x_1 - x_3) - y_1 \mod p$$

Example :

Consider the Elliptic curves Weierstrass equation is : $y^2 = x^3 + 3x + 10 \pmod{29}$ let P=(5,11) , Q=(10, 24), 1. Add the points P, Q.

2. Double the point P.

Answer:

2. For Doubling point P, we should calculate S to be able calculate R R = P+P = 2P.

$$S = \frac{3x_1^2 + a}{2y_1} \mod p$$

$$S = \frac{3(5)^2 + 3}{2 * 11} \mod 29 = \frac{78}{22} \mod 29 = \frac{78 \mod 29}{22 \mod 29} \mod 29 = 20 * 22^{-1} \mod 29 = 20 * 4 \mod 29$$

$$= 80 \mod 29 = 22$$

$$x_3 = s^2 - x_1 - x_2 \mod p$$

$$y_3 = s(x_1 - x_3) - y_1 \mod p$$

$$x_3 = 10 \quad , y_3 = 24$$

$$R = (10, 24)$$

Elliptic Curves Diffie–Hellman Key Exchange

ECDH Domain Parameters

1. Choose a prime p and the elliptic curve

$$E: y^2 \equiv x^3 + a \cdot x + b \mod p$$

2. Choose a primitive element $P = (x_P, y_P)$ The prime *p*, the curve given by its coefficients *a*,*b*, and the primitive element *P* are the domain parameters.

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Elliptic Curves Diffie–Hellman Key Exchange

The correctness of the protocol is easy to prove.

Proof. Alice computes

$$aB = a(bP)$$

while Bob computes

bA = b(aP).

Elliptic Curve Digital Signature Algorithm (ECDSA)

Key Generation for ECDSA

- 1. Use an elliptic curve E with
 - modulus p
 - coefficients a and b
 - a point A which generates a cyclic group of prime order q
- 2. Choose a random integer d with 0 < d < q.
- 3. Compute B = dA.

The keys are now:

$$k_{pub} = (p, a, b, q, A, B)$$
$$k_{pr} = (d)$$

Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA Signature Generation

- 1. Choose an integer as random ephemeral key k_E with $0 < k_E < q$.
- 2. Compute $R = k_E A$.
- 3. Let $r = x_R$.
- 4. Compute $s \equiv (h(x) + d \cdot r) k_E^{-1} \mod q$.

ECDSA Signature Verification

- 1. Compute auxiliary value $w \equiv s^{-1} \mod q$.
- 2. Compute auxiliary value $u_1 \equiv w \cdot h(x) \mod q$.
- 3. Compute auxiliary value $u_2 \equiv w \cdot r \mod q$.
- 4. Compute $P = u_1 A + u_2 B$.
- 5. The verification $ver_{k_{pub}}(x, (r, s))$ follows from:

 $x_P \begin{cases} \equiv r \mod q \implies \text{valid signature} \\ \not\equiv r \mod q \implies \text{invalid signature} \end{cases}$

Thank You!

See You next Lectures!! Any Question?

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt Tel:+202383711146 Fax:+20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline:16672 Website: www.msa.edu.eg

