
SCALAR OBJECTS
 int – represent integers, ex. 5

 float – represent real numbers, ex. 3.27

 bool – represent Boolean values True and False

 NoneType – special and has one value, None

 can use type() to see the type of an object

>>> type(5)

int

>>> type(3.0)

float

6.0001 LECTURE 1 25

TYPE CONVERSIONS (CAST)
 can convert object of one type to another

 float(3) converts integer 3 to float 3.0

 int(3.9) truncates float 3.9 to integer 3

6.0001 LECTURE 1 26

OPERATORS ON ints and floats
 i+j the sum

 i-j the difference

 i*j the product

 i/j division

 i%j the remainder when i is divided by j

 i**j i to the power of j

6.0001 LECTURE 1 29

if both are ints, result is int
if either or both are floats, result is float

result is float

STRINGS
 letters, special characters, spaces, digits

 enclose in quotation marks or single quotes
hi = "hello there"

 concatenate strings
name = "ana"

greet = hi + name

greeting = hi + " " + name

 do some operations on a string as defined in Python docs
silly = hi + " " + name * 3

6.0001 LECTURE 2 4

INPUT/OUTPUT: print
 used to output stuff to console

 keyword is print

x = 1

print(x)

x_str = str(x)

print("my fav num is", x, ".", "x =", x)

print("my fav num is " + x_str + ". " + "x = " + x_str)

6.0001 LECTURE 2 5

INPUT/OUTPUT: input("")
 prints whatever is in the quotes

 user types in something and hits enter

 binds that value to a variable

text = input("Type anything... ")

print(5*text)

 input gives you a string so must cast if working
with numbers

num = int(input("Type a number... "))

print(5*num)

6.0001 LECTURE 2 6

COMPARISON OPERATORS ON
int, float, string

 i and j are variable names

 comparisons below evaluate to a Boolean

i > j

i >= j

i < j

i <= j

i == j equality test, True if i is the same as j

i != j inequality test, True if i not the same as j

6.0001 LECTURE 2 7

LOGIC OPERATORS ON bools
 a and b are variable names (with Boolean values)

not a True if a is False
False if a is True

a and b True if both are True

a or b True if either or both are True

6.0001 LECTURE 2 8

A B A and B A or B

True True True True

True False False True

False True False True

False False False False

COMPARISON EXAMPLE
pset_time = 15

sleep_time = 8

print(sleep_time > pset_time)

derive = True

drink = False

both = drink and derive

print(both)

6.0001 LECTURE 2 9

CONTROL FLOW - BRANCHING
if <condition>:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

if <condition>:

<expression>

<expression>

...

elif <condition>:

<expression>

<expression>

...

else:

<expression>

<expression>

...

 <condition> has a value True or False

 evaluate expressions in that block if <condition> is True

6.0001 LECTURE 2 11

INDENTATION
matters in Python

 how you denote blocks of code
x = float(input("Enter a number for x: "))

y = float(input("Enter a number for y: "))

if x == y:

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

elif x < y:

print("x is smaller")

else:

print("y is smaller")

print("thanks!")

print("x and y are equal")

if y != 0:

print("therefore, x / y is", x/y)

print("x is smaller")

print("y is smaller")

6.0001 LECTURE 2 12

CONTROL FLOW:
while LOOPS
while <condition>:

<expression>

<expression>

...

 <condition> evaluates to a Boolean

 if <condition> is True, do all the steps inside the
while code block

 check <condition> again

 repeat until <condition> is False

6.0001 LECTURE 2 16

while LOOP EXAMPLE
You are in the Lost Forest.

Go left or right?

PROGRAM:

n = input("You're in the Lost Forest. Go left or right? ")

while n == "right":

n = input("You're in the Lost Forest. Go left or right? ")

print("You got out of the Lost Forest!")

6.0001 LECTURE 2 17

CONTROL FLOW:
while and for LOOPS
 iterate through numbers in a sequence

more complicated with while loop

n = 0

while n < 5:

print(n)

n = n+1

shortcut with for loop

for n in range(5):

print(n)

6.0001 LECTURE 2 18

CONTROL FLOW: for LOOPS
for <variable> in range(<some_num>):

<expression>

<expression>

...

 each time through the loop, <variable> takes a value

 first time, <variable> starts at the smallest value

 next time, <variable> gets the prev value + 1

 etc.

6.0001 LECTURE 2 19

range(start,stop,step)
 default values are start = 0 and step = 1 and optional

 loop until value is stop - 1

mysum = 0

for i in range(7, 10):

mysum += i

print(mysum)

mysum = 0

for i in range(5, 11, 2):

mysum += i

print(mysum)

6.0001 LECTURE 2 20

break STATEMENT
 immediately exits whatever loop it is in

 skips remaining expressions in code block

 exits only innermost loop!

while <condition_1>:

while <condition_2>:

<expression_a>

break

<expression_b>

<expression_c>

6.0001 LECTURE 2 21

break STATEMENT
mysum = 0

for i in range(5, 11, 2):

mysum += i

if mysum == 5:

break

mysum += 1

print(mysum)

 what happens in this program?

mysum += i

if mysum == 5:

break

6.0001 LECTURE 2 22

for VS while LOOPS
for loops

 know number of
iterations

 can end early via
break

 uses a counter

 can rewrite a for loop
using a while loop

while loops

 unbounded number of
iterations

 can end early via break

 can use a counter but
must initialize before loop
and increment it inside loop

may not be able to
rewrite a while loop using
a for loop

6.0001 LECTURE 2 23

STRINGS
 think of as a sequence of case sensitive characters

 can compare strings with ==, >, < etc.

 len() is a function used to retrieve the length of the
string in the parentheses

s = "abc"

len(s) evaluates to 3

6.0001 LECTURE 3 4

STRINGS
 square brackets used to perform indexing into a string
to get the value at a certain index/position
s = "abc"

s[0] evaluates to "a"
s[1] evaluates to "b"
s[2] evaluates to "c"
s[3] trying to index out of bounds, error
s[-1] evaluates to "c"
s[-2] evaluates to "b"
s[-3] evaluates to "a"

6.0001 LECTURE 3 5

index: 0 1 2 indexing always starts at 0

index: -3 -2 -1 last element always at index -1

STRINGS
 can slice strings using [start:stop:step]

 if give two numbers, [start:stop], step=1 by default

 you can also omit numbers and leave just colons

6.0001 LECTURE 3 6

s = "abcdefgh"

s[3:6] evaluates to "def", same as s[3:6:1]

s[3:6:2] evaluates to "df"

s[::] evaluates to "abcdefgh", same as s[0:len(s):1]

s[::-1] evaluates to "hgfedbca", same as s[-1:-(len(s)+1):-1]

s[4:1:-2] evaluates to "ec"

STRINGS
 strings are “immutable” – cannot be modified

s = "hello"

s[0] = 'y' gives an error

s = 'y'+s[1:len(s)] is allowed,
s bound to new object

6.0001 LECTURE 3 7

s

"hello"

"yello"

for LOOPS RECAP
 for loops have a loop variable that iterates over a set of
values

for var in range(4): var iterates over values 0,1,2,3

<expressions> expressions inside loop executed
with each value for var

for var in range(4,6): var iterates over values 4,5
<expressions>

 range is a way to iterate over numbers, but a for loop
variable can iterate over any set of values, not just numbers!

6.0001 LECTURE 3 8

STRINGS AND LOOPS
 these two code snippets do the same thing

 bottom one is more “pythonic”

s = "abcdefgh"

for index in range(len(s)):

if s[index] == 'i' or s[index] == 'u':

print("There is an i or u")

for char in s:

if char == 'i' or char == 'u':

print("There is an i or u")

6.0001 LECTURE 3 9

CODE EXAMPLE:
ROBOT CHEERLEADERS
an_letters = "aefhilmnorsxAEFHILMNORSX"

word = input("I will cheer for you! Enter a word: ")

times = int(input("Enthusiasm level (1-10): "))

i = 0

while i < len(word):

char = word[i]

if char in an_letters:

print("Give me an " + char + "! " + char)

else:

print("Give me a " + char + "! " + char)

i += 1

print("What does that spell?")

for i in range(times):

print(word, "!!!")

6.0001 LECTURE 3 10

for char in word:

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

is_even(3)

HOW TO WRITE and
CALL/INVOKE A FUNCTION

6.0001 LECTURE 4 12

def is_even(i):

"""

Input: i, a positive int

Returns True if i is even, otherwise False

"""

print("inside is_even")

return i%2 == 0

IN THE FUNCTION BODY

6.0001 LECTURE 4 13

ONE WARNING IF NO
return STATEMENT
def is_even(i):

"""

Input: i, a positive int

Does not return anything

"""

i%2 == 0

 Python returns the value None, if no return given

 represents the absence of a value

6.0001 LECTURE 4 19

TUPLES
 an ordered sequence of elements, can mix element types

 cannot change element values, immutable

 represented with parentheses

te = ()

t = (2,"mit",3)

t[0] evaluates to 2

(2,"mit",3) + (5,6) evaluates to (2,"mit",3,5,6)

t[1:2] slice tuple, evaluates to ("mit",)

t[1:3] slice tuple, evaluates to ("mit",3)

len(t) evaluates to 3

t[1] = 4 gives error, can’t modify object
6.0001 LECTURE 5 4

TUPLES
 conveniently used to swap variable values

x = y temp = x (x, y) = (y, x)

y = x x = y

y = temp

 used to return more than one value from a function

def quotient_and_remainder(x, y):

q = x // y

r = x % y

return (q, r)

(quot, rem) = quotient_and_remainder(4,5)

6.0001 LECTURE 5 5

LISTS
 ordered sequence of information, accessible by index

 a list is denoted by square brackets, []

 a list contains elements
• usually homogeneous (ie, all integers)

• can contain mixed types (not common)

 list elements can be changed so a list is mutable

6.0001 LECTURE 5 7

INDICES AND ORDERING
a_list = []

L = [2, 'a', 4, [1,2]]

len(L) evaluates to 4

L[0] evaluates to 2

L[2]+1 evaluates to 5

L[3] evaluates to [1,2], another list!

L[4] gives an error

i = 2

L[i-1] evaluates to ‘a’ since L[1]='a' above

6.0001 LECTURE 5 8

CHANGING ELEMENTS
 lists are mutable!

 assigning to an element at an index changes the value

L = [2, 1, 3]

L[1] = 5

 L is now [2, 5, 3], note this is the same object L

6.0001 LECTURE 5 9

L

[2,1,3][2,5,3]

ITERATING OVER A LIST
 compute the sum of elements of a list

 common pattern, iterate over list elements

 notice
• list elements are indexed 0 to len(L)-1

• range(n) goes from 0 to n-1

6.0001 LECTURE 5 10

total = 0

for i in range(len(L)):

total += L[i]

print total

total = 0

for i in L:

total += i

print total

OPERATIONS ON LISTS - ADD
 add elements to end of list with L.append(element)

 mutates the list!
L = [2,1,3]

L.append(5) L is now [2,1,3,5]

 what is the dot?
• lists are Python objects, everything in Python is an object

• objects have data

• objects have methods and functions

• access this information by object_name.do_something()

• will learn more about these later
6.0001 LECTURE 5 11

OPERATIONS ON LISTS - ADD
 to combine lists together use concatenation, + operator,
to give you a new list

 mutate list with L.extend(some_list)

L1 = [2,1,3]

L2 = [4,5,6]

L3 = L1 + L2 L3 is [2,1,3,4,5,6]
L1, L2 unchanged

L1.extend([0,6]) mutated L1 to [2,1,3,0,6]

6.0001 LECTURE 5 12

OPERATIONS ON LISTS -
REMOVE
 delete element at a specific index with del(L[index])

 remove element at end of list with L.pop(), returns the
removed element

 remove a specific element with L.remove(element)
• looks for the element and removes it

• if element occurs multiple times, removes first occurrence

• if element not in list, gives an error

L = [2,1,3,6,3,7,0] # do below in order

L.remove(2) mutates L = [1,3,6,3,7,0]
L.remove(3) mutates L = [1,6,3,7,0]
del(L[1]) mutates L = [1,3,7,0]
L.pop() returns 0 and mutates L = [1,3,7]

6.0001 LECTURE 5 13

CONVERT LISTS TO STRINGS
AND BACK
 convert string to list with list(s), returns a list with every
character from s an element in L

 can use s.split(), to split a string on a character parameter,
splits on spaces if called without a parameter

 use ''.join(L) to turn a list of characters into a string, can
give a character in quotes to add char between every element

6.0001 LECTURE 5 14

s = "I<3 cs" s is a string
list(s) returns ['I','<','3',' ','c','s']
s.split('<') returns ['I', '3 cs']
L = ['a','b','c'] L is a list
''.join(L) returns "abc"
'_'.join(L) returns "a_b_c"

OTHER LIST OPERATIONS
 sort() and sorted()

 reverse()

 and many more!
https://docs.python.org/3/tutorial/datastructures.html

L=[9,6,0,3]

sorted(L) returns sorted list, does not mutate L

L.sort() mutates L=[0,3,6,9]

L.reverse() mutates L=[9,6,3,0]

6.0001 LECTURE 5 15

https://docs.python.org/3/tutorial/datastructures.html

CLONING A LIST
 create a new list and copy every element using
chill = cool[:]

6.0001 LECTURE 5 20

SORTING LISTS
 calling sort() mutates the list, returns nothing

 calling sorted()
does not mutate
list, must assign
result to a variable

6.0001 LECTURE 5 21

LISTS OF LISTS OF LISTS OF….
 can have nested lists

 side effects still
possible after mutation

6.0001 LECTURE 5 22

MUTATION AND ITERATION
Try this in Python Tutor!

 avoid mutating a list as you are iterating over it
def remove_dups(L1, L2):

for e in L1:

if e in L2:

L1.remove(e)

L1 = [1, 2, 3, 4]

L2 = [1, 2, 5, 6]

remove_dups(L1, L2)

 L1 is [2,3,4] not [3,4] Why?
• Python uses an internal counter to keep track of index it is in the loop

• mutating changes the list length but Python doesn’t update the counter

• loop never sees element 2

6.0001 LECTURE 5 23

def remove_dups(L1, L2):

L1_copy = L1[:]

for e in L1_copy:

if e in L2:

L1.remove(e)

