

Cryptography ECE5632 - Spring 2025

Lecture 8A

Dr. Farah Raad

The First British Higher Education in Egypt

The same start and the FT SQ

MSA UNIVERSITY جامعة أكتوبر للعلوم الحديثة والآداب

ECE5632 - Spring 2025-Dr. Farah Raad

- ➢ Invented in 1985 by Taher ElGamal.
- Can be viewed as an extension of the DHKE protocol
- Based on the intractability of the discrete logarithm problem and the Diffie-Hellman problem

The Elgamal Encryption Protocol

Alice

Bob

choose large prime p

choose primitive element $\alpha \in \mathbb{Z}_{p}^{*}$ or in a subgroup of \mathbb{Z}_{p}^{*} choose $d = k_{prB} \in \{2, ..., p-2\}$

compute $\beta = k_{pubB} = \alpha^q \mod p$

$$k_{pubB} = (p, \alpha, \beta)$$

choose i = $k_{prA} \in \{2, ..., p-2\}$ compute $k_E = k_{pubA} = a^i \mod p$ compute masking key $k_M = \beta^i \mod p$ encrypt message $x \in Z_p^*$:

 $y = x k_M \mod p$

(k_Е, у)

compute masking key $k_M = k_E^{a} \mod p$ decrypt $x = y k_M^{-1} \mod p$

This looks very similar to the DHKE! The actual Elgamal protocol re-orders the computations which helps to save one communication

Example: In this example, Bob generates the Elgamal keys and Alice encrypts the message x = 26.

Proof of Correctness:

Show that $y \cdot K_M^{-1} \mod p \equiv x \mod p$

$$y \cdot K_M^{-1} \mod p \equiv y \cdot (K_E^d)^{-1} \mod p$$
$$\equiv x \cdot K_M \cdot K_E^{-d} \mod p$$
$$\equiv x \cdot \beta^i \cdot (\alpha^i)^{-d} \mod p$$
$$\equiv x \cdot (\alpha^d)^i \cdot (\alpha^i)^{-d} \mod p$$
$$\equiv x \cdot \alpha^0 \mod p$$
$$\equiv x \mod p$$

- \succ K_E must be different for every x.
- ElGamal is a probabilistic encryption scheme, unlike schoolbook RSA.
- Since it depends on DLP, p should be at least 1024 bits long.
- \succ i, K_{pr} should result from a TRNG.

Computational Aspects

≻ Key Generation

- Generation of prime *p*
- p has to be at least 1024 bits long
- Encryption
 - Requires two modular exponentiations and a modular multiplication
 - All operands have a bit length of log_2P
 - Efficient execution requires methods such as the square-and-multiply algorithm
- Decryption
 - Requires one modular exponentiation and one modular inversion
 - As shown in Understanding Cryptography, the inversion can be computed
- from the ephemeral key

ElGamal Encryption: Attack

A passive attacker's goal is to observe the channel and compute x.

He doesn't have i or d.

13

ElGamal Encryption: Attack

Passive attack option 1: Compute d = $\log_{\alpha}\beta$ or, compute i = $\log_{\alpha}K_{E}$

So, we must make sure that the DLP is very hard. i.e., length of p is ≥ 1024 bits.

Passive attack option 2: The attacker knows that i is being reused.

Make sure there's a fresh TRN i used every time.

ElGamal Encryption: Attack

Passive attacks

- Attacker eavesdrops p, α , $\beta = \alpha^d$, $k_E = \alpha^i$, $y = x^{-}\beta^i$ and wants to recover x
- Problem relies on the DLP
- Key must be at leasst 1024 bits long
- Active attacks
 - MITM attack defeats it
 - An attack is also possible if the secret exponent *i* is being used more than once
 - If attacker can guess the plaintext of one message, it can be used to decrypt another message using the same key

Example

- ➢ Find 3¹⁰⁰⁰⁰⁰ mod 53
- > Use Fermat's theorem to find a number x between 0 and 36 with X^{145} equivalent to 7 modulo 37.

Example :1

 \succ Find 3¹⁰⁰⁰⁰⁰ mod 53 Using Fermat Little Theorem: 3⁵³⁻¹=1 mod 53 100000/52 : q=1923 , r=4 $3^{99996} = (3^{52})^{1923} = 1 \mod 53$ $3^{100000} = 3^4(3^{99996}) = 3^4 \mod{53}$ $3^{100000} = 81 \mod 53 = 28 \mod 53$

17

Example :2

Use Fermat's theorem to find a number x between 0 and 36 with X¹⁴⁵ equivalent to 7 modulo 37.

Using Fermat Little Theorem:

Since 37 is prime and with x not divisible by 37,

Then $x^{37-1} = x^{36} = 1 \mod 37$.

$$x^{145} = (x^{36})^4 \cdot x = 7 \mod 37$$

Thank You!

See You next Lectures!! Any Question?

THE FIRST BRITISH HIGHER EDUCATION IN EGYPT

26th July Mehwar Road Intersection with Wahat Road, 6th of October City, Egypt Tel:+202383711146 Fax:+20238371543 Postal code: 12451 Email:info@msa.eun.eg Hotline:16672 Website: www.msa.edu.eg

