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PKC Algorithms: Three Families

_ e.g.:

* RSA algorithm. « Diffie—Hellman key
exchange.

* ElGamal encryption.

* Digital Signature
Algorithm (DSA).

e.g
EC Diffie—Hellman key

exchange (ECDH).
* EC Digital Signature

Algorithm (ECDSA).
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Elliptic Curve Cryptography

Problem:
Asymmetric schemes like RSA and Elgamal require exponentiations in

Integer rings and fields with parameters of more than 1000 bits.
| High computational effort on CPUs with 32-bit or 64-bit arithmetic

_| Large parameter sizes critical for storage on small and embedded

Motivation:
Smaller field sizes providing equivalent security are desirable

Solution:
Elliptic Curve Cryptography uses a group of points (instead of integers) for
cryptographic schemes with coefficient sizes of 160-256 bits, reducing

significantly the computational effort.

ECC is based on the generalized discrete logarithm problem.
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Elliptic Curve Cryptography
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polynomial equations over the real

numbers. / >\ ,.
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Plot of all points (x,y) which fulfill the equation x> +v* = r* over B

"
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Plot of all points (x,y) which fulfill the equation a-x*>+b-y* = ¢ over R



Elliptic Curve Cryptography

» From the two examples above, we conclude that we can form certain
types of curves from polynomial equations.

» An éelliptic curveis a special type of polynomial equation.

» In cryptography, we are interested in elliptic curves module a prime p

Definition 9.1.1 Elliptic Curve
The elliptic curve over Z,, p > 3, is the set of all pairs (x.y) € Z,
which fulfill

y=x +a-x+bmod p

together with an imaginary point of infinity &, where
a,beZ,

and the condition 4-a> +27-b* # 0 mod p.

O Note that Z,={0,1,..., p -1}is a set of integers with modulo p arithmetic
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Elliptic Curve Cryptography

» Elliptic curves are polynomials that define points based on
the (simplified) Welerstrass equation:

y2=x3+ax+b

for parameters a,b that specify the exact shape of the curve

» On the real numbers and with parameters a, b R, an elliptic
curve looks like this al

» Elliptic curves can not just be defined over the real numbers

R but over many other types of finite fields.
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Elliptic Curve Cryptography

P = (x1.y1) and Q = (x2.y2)

P+Q=R
(x1.y1) + (x2.¥2) = (x3,¥3)

Point Addition P+Q This is the case where
we compute R= P+ Qand P# Q.

The construction works as follows: Draw a line through ~Pand
@ and obtain a third point of intersection between the elliptic

curve and the line.
Point Doubling P+P This is the case where

we compute P+Qbut P= Q. Hence, we can
write R= P+P=2P.
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Point addition on an elliptic curve over the real numbers
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Point doubling on an elliptic curve over the real numbers




Elliptic Curve Cryptography

Elliptic Curve Point Addition and Point Doubling

¥
x3=s5"—x;—xxmod p

y3 =s5(x; —x3)—y mod p

where

Ixi4a

—— mod p ;1f P = Q (point doubling)

¢ — { E:; mod p ;if P # Q (point addition)
2_1.'|
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_ Elliptic Curve Cryptography

Consider the Elliptic curves Weierstrass equation is : y? = x3 + 3x + 10 (mod29)
let P=(5,11) , Q=(10, 24),
1. Add the points P, Q.
2. Double the point P.

yZ=x3+ax+bh

Answer:;
From Elliptic equation, we have a= 3, b=10, P=29
1. For Adding points P, Q , we should calculate S to be able calculate R P+0=R
s =221 modp (r1y1) + (x2.32) = (x3,33)
X2 — X1
24 —11
=10_¢ mod 29 = 13 * (5)" Y mod 29 = 13 * 6 mod29 = 20
X3 = 52 —x;—x2mod p x3 =8 ,y3 =16
y3 = s(x; —x3)—y; mod p R=(8,16)
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~ Elliptic Curve Cryptography

Consider the Elliptic curves Weierstrass equation is : y? = x3 + 3x + 10 (mod29)
let P=(5,11) , Q=(10, 24),

1. Add the points P, Q.

2. Double the point P.

Answer:
2. For Doubling point P, we should calculate S to be able calculate R R=PtP=2P.
3x¢ +a
S = mod p
2y,
S 3(5)°43 d 29 78 d29 78modz2? d29 = 20 * 227 'mod29 = 20 * 4mod29
= —— = —-— = = %k = %k
2«11 0 22 M 22mod29 " ° mo mo
= 80 mod29 = 22

X3 = 52 —x;—xa2mod p
y3 = s(x; —x3)—y; mod p
X3 = 10 y Y3 = 24
R=(10, 24)
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Elliptic Curves Diffie-Hellman Key Exchange

ECDH Domain Parameters

1. Choose a prime p and the elliptic curve

2. Choose a primitive element P = (xp, vp)

ment P are the domain parameters.

E:}*zzxj+a-_x+b mod p

The prime p, the curve given by its coefficients a, b, and the primitive ele-

Alice
choose k,,y =a € {2.3.... #E—1}
compute kpps =aP =A = (x4.¥4)

compute al = Typ
Joint secret between Alice and Bob: Tip = (xap.vag).

Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

Bob
choose kg =bec{2,3,... #E -1}
compute kpypg = bFP =B = (xg,vg)

compute bA = Typ
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Elliptic Curves Diffie-Hellman Key Exchange

The correctness of the protocol 1s easy to prove.

Proof. Alice computes
aB=a(bP)

while Bob computes
bA=b(aP).
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Elliptic Curve Digital Signature Algorithm (EC

DSA)

Key Generation for ECDSA

1. Use an elliptic curve E with

m modulus p
m coefficients a and b
m apoint A which generates a cyclic group of prime order ¢

2. Choose a random integer d with 0 < d < gq.
3. Compute B=dA.

The keys are now:

k;mh = (p,a,b,q,A,B)

kpr = (d)
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Elliptic Curve Digital Signature Algorithm (ECDSA)

ECDSA Signature Generation

1. Choose an integer as random ephemeral key kg with 0 < kg < g.
2. Compute R = kg A.

3. Let r = xp.

4. Compute s = (h(x) +d-r)ke~" mod g.

ECDSA Signature Verification

Compute auxiliary value w = s~! mod g.
Compute auxiliary value u; = w- h(x) mod gq.
Compute auxiliary value u» = w-r mod gq.
Compute P=u1 A +u> B.

The verification very,,, (x, (r.s)) follows from:

ol o

= r mod g == valid signature
P . c
# r mod g == invalid signature
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Thank You!

See You next Lectures!!
Any Question?
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